Scaling Linux for HPC and
Financial Applications

Linux User Summit 2009
Christoph Lameter

Modern processors

* Phase where clock frequency increased
 Phase where the concurrency increases

« Performance can only be reached with multi-
threaded applications.

 Memory bottlenecks (FSB) leads to distributed
memory systems even on a single
motherboard.

 NUMA effects begin to become a factor

2009 Nehalem Systems

Standard server: Dual Quad Nehalem 2.93 Ghz
4 cores per socket
Hyper threaded

16 hardware threads total

Core Core Core Core Core
L1 Caches L1 Caches L1 Caches L1 Caches | L1 Caches

L2 Cache | L2 Cache L2 Cache L2 Cache | L2 Cache

Core
L1 Caches

L2 Cache

L3 Cache L3 Cache

Implications

Performance is dependent on presence of data in cpu cache.
Access to system memory is extremely slow.

Full sharing of all caches only between threads hyperthreaded on
the same core.

Threads on the same socket share the same L3 cache. If they
execute the same code then cachelines must be refetched for L1
and L2 caches.

Cache warming effects.

Performance of a code segment varies depending on where it is
placed in the system.

NUMA Memory Architecture

 Memory is local or must be reached via the other socket.
« Two NUMA nodes (today more to come)

« OS must manage locality of memory assigned to processes.

Tylersburg
EF

NUMA allocation strategies

Kernel has a NUMA subsystem to control memory
allocations.

Default is to allocate memory local to the processor on
which a thread is currently running.

Not adequate for data that is shared between lots of
processes. Interleaving is then necessary to avoid
overloading a processor.

Devices (such as network interfaces and storage) may
be local to some memory and work faster if threads are
running “near” the device.

2010: Nehalem EX

« See EX announcement: 8 cores per socket,
hyperthreaded.,

« Quad Socket systems: 64 threads, 4 NUMA
nodes.

e Octo Socket: 128 threads, 8 NUMA nodes.

» By 2015 Intel expects 512 threads in an
average system.

 Memory sizes in the Terabyte range become
possible.

Supercomputers on the Desktop

NUMA and high processor counts were typical for
Supercomputer in 199x and 200x.

Likely becoming a standard feature next year for high
end machines desktops and servers alike.

Special technology (Nvidia GPUs) can give you
thousands of “threads” today.

Performance of computers is increasing significantly.

How to get maximum
performance

Hardware caching needs to be exploited to maximum effect.
The OS can only provide heuristics.

If well implemented then the OS can only assume that past
behavior will continue in the future.

OSes in generally are not doing a good job with scheduling in the
complex environment of todays processors.

Scheduler is optimized for maximum job throughput of the overall
system. It is not designed to make a specific thread run with
maximum performance nor to allow a process to react in time.

Manual tuning is necessary for minimal latency, highest
performance or predictable response times.

Realtime

Supportive features by the OS to limit latencies by decreasing overall
effectiveness of processing.

Realtime features requires OS expertise and application changes to be
used in a meaningful way.

The OS can generate very long latencies for any memory allocation, I/O
action or memory reclaim even if “Realtime” features are available and
enabled.

Predictable response times are only possible if expertise exists that allows
one to assess what potential latencies can be created through which
system call.

Realtime features have to be disabled to have a system with minimal
latencies and optimal performance.

Realtime is in Linux is a fuzzy term that refers to a variety of techniques
implemented at various levels. There'is no consistent meaning.

Data Locality

o Spatial
- NUMA nodes
- Virtual to physical mappings TLB.
- DRAM “pages”
e Temporal
- L1, L2, L3 cache

Optimal Single Thread

Simple because no caches are shared.
Warm up needed.

Memory locality is an issue

No scheduler interruptions.

Run process with sufficiently high priority so that another process is not run on the
same processor.

- renice -5 <process>
- chrt -f 90 <process>

Pin the process to a processor so that the process cannot be moved by the
scheduler.

- taskset —cpu-list <processor> <process>

Force allocation from local memory.

- numactl -membind <localnode> <process>

Dual Threaded Process

* Process should be bound to a hyperthreaded pair of threads if
the individual threads do not exhaust core resources.

 |f core resources are a problem then different cores are
needed. This will require additional cacheline fetches from
main memory (or L3) because the L1 and L2 caches are

separate.

« The commands from the last slide can be reused. Just the
taskset command needs to be changed:

- taskset —cpulist <processori>, <processor2>

Multi threaded

It is advantageous to restrict a process to a single socket and
its memory as long as possible.

Single node means that all memory will be local as long as the
memory is forced to come from the local node and the
processes are restricted to the cores of one socket.

If more threads are needed than available on a socket then
memory also may have to be reassigned to still be local to a
Process.

Memory then has to be categorized into data accessed by a
single thread or a thread group local to a socket and memory
that is shared between threads running on multiple nodes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

