
Extreme High Performance Computing or Why
Microkernels suck

Christoph Lameter
sgi

clameter@sgi.com

Abstract

One often wonders how well Linux scales. We
frequently get suggestions that Linux cannot
scale because it is a monolithic operating sys-
tem kernel. However, microkernels have never
scaled well and Linux has been scaled up to
support thousands of processors, terabytes of
memory and hundreds of petabytes of disk stor-
age which is the hardware limit these days.
Some of the techniques used to make Linux
scale were per cpu areas, per node structures,
lock splitting, cache line optimizations, mem-
ory allocation control, scheduler optimizations
and various other approaches. These required
significant detail work on the code but no
change in the general architecture of Linux.

The presentation will give an overview of why
Linux scales and shows the hurdles micro ker-
nels would have to overcome in order to do the
same. The presentation will assume a basic un-
derstanding of how operating systems work and
familiarity with what functions a kernel per-
forms.

1 Introduction

Monolithic kernels are in wide use today. One
wonders though how far a monolithic kernel

architecture can be scaled given the complex-
ity of operating systems that would have to be
managed to keep the operating system work-
ing reliably. We ourselves were initially skep-
tical that we could go any further when we
were first able to run our Linux kernel with
512 processors because we encountered a se-
ries of scalability problems that were due to the
way the operating system handled the unusu-
ally high amounts of processes and processors.
However, it was possible to address the scala-
bility bottlenecks with some work using a vari-
ety of synchronization methods provided by the
operating system and we were then surprised
to only encounter minimal problems when we
later doubled the number of processors to 1024.
At that point the primary difficulties seemed to
shift to other areas having more to do with the
limitation of the hardware and firmware. We
were then able to further double the processor
count to two thousand and finally four thousand
processors and we were still encountering only
minor problems that were easily addressed. We
expect to be able to handle 16k processors in
the near future.

As the number of processors grew so did the
amount of memory. In early 2007 machines
are deployed with 8 terabytes of main memory.
Such a system with a huge amount of mem-
ory and a large set of processors creates high
performance capabilities in a traditional Unix

1



environment that allows the running of tradi-
tional applications avoiding major efforts to re-
design the basic logic of the software. Compet-
ing technologies such as compute clusters can-
not offer such an environment. Clusters con-
sist of many nodes that run their own operat-
ing system whereas scaling up a monolithic op-
erating system has a single address space and
a single operating system. The challenge in
clustered environments is to redesign the ap-
plications so that processing can be done con-
currently on nodes that only communicate via
a network. A large monolithic operating sys-
tem with lots of processors and memory is eas-
ier to handle since processes can share memory
which makes synchronization via Unix share
memory possible and data exchange simple.

Large scale operating systems are typically
based on NUMA technology. Some memory is
nearer to a processor than other memory that
may be more distant and more costly to ac-
cess. Memory locality in such a system deter-
mines the overall performance of the applica-
tions. The operating system has a role in that
context of providing heuristics in order to place
the memory in such a way that memory laten-
cies are reduced as much as possible. These
have to be heuristics because the operating sys-
tem cannot know how the application will ac-
cess the memory it requested in the future. The
access patterns of the application should ideally
determine the placement of data but the oper-
ating system has no way of predicting appli-
cation behavior. A new memory control API
was therefore added to the operating system so
that applications can set up memory allocation
policies to guide the operating system in allo-
cating memory for the application. The notion
of memory allocation control is not standard-
ized and so most contemporary programming
languages have no ability to manage data lo-
cality on their own.1 Libraries need to be pro-
vided that allow the application to provide in-

1There are some encouraging developments in this

formation to the operating system about desir-
able memory allocation strategies.

One idea that we keep encountering in discus-
sions of these large scale systems is that Micro-
kernels should allow us to handle the scalability
issues in a better way and that they may actu-
ally allow a better designed system that is eas-
ier to scale. It was suggested that a Microker-
nel design is essential to manage the complex-
ity of the operating systems and ensure its reli-
able operation. We will evaluate that claim in
the following sections.

2 Micro vs. monolithic kernel

Micro kernels allow the use of the context con-
trol primitives of the processor to isolate the
various components of the operating system.
This allows a fine grained design of the operat-
ing system with natural APIs at the boundaries
of the subsystems. However, separate address
spaces require context switches at the bound-
aries which may create a significant overhead
for the processors. Thus many micro kernels
are compromises between speed and the ini-
tially envisioned fine grained structure (a hy-
brid approach). To some extend that problem
can be overcome by developing a very small
low level kernel that fits into the processor
cache (for example L4).2 But then we no longer
have an easily programmable and maintainable
operating system kernel. A monolithic kernel
usually has a single address space and all kernel
components are able to access memory without
restriction.

area with Unified Parallel C supporting locality infor-
mation in the language itself. See Tarek, El-Ghazawi,
William Carlson, Thomas Sterling, Katherine Yelick.
UPC: Distributed Shared-Memory Programming (Wiley
Interscience, 2003).

2Benjamin Roch. Monolithic kernel. vs. Microkernel
(Retrieved 9 April 2007, http://www.vmars.tuwien.ac.at
/courses/akti12/journal/04ss/article_04ss_Roch.pdf).

2



2.1 IPC vs. function call

Context switches have to be performed in or-
der to isolate the components of a Microker-
nel. Thus communication between different
components must be controlled through an In-
ter Process Communication mechanism that in-
curs similar overhead to a system call in mono-
lithic kernel. Typically Microkernels use mes-
sage queues to communicate between different
components. In order to communicate between
two components of a Microkernel the following
steps have to be performed:

1. The originating thread in the context of the
originating component must format and
place the request (or requests) in a mes-
sage queue.

2. The originating thread must somehow no-
tify the destination component that a mes-
sage has arrived. Either interrupts (or
some other form of signaling) are used or
the destination component must be polling
its message queue.

3. It may be necessary for the originating
thread to perform a context switch if there
are not enough processors around to con-
tinually run all threads (which is com-
mon).

4. The destination component must now ac-
cess the message queue and interpret the
message and then perform the requested
action. Then we potentially have to redo
the 4 steps in order to return the result of
the request to the originating component..

A monolithic operating system typically uses
function calls to transfer control between sub-
systems that run in the same operating system
context:

1. Place arguments in processor registers
(done by the compiler)

2. Call the subroutine

3. Subroutine accesses registers to interpret
the request (done by compiler)

4. Subroutine returns the result in another
register

From the description above it is already evi-
dent that the monolithic operating system can
rely on much lower level processor compo-
nents than the Microkernel and is well sup-
ported by existing languages used to code for
operating system kernels. The Microkernel has
to manipulate message queues which are higher
level constructs and—unlike registers—cannot
be directly modified and handled by the proces-
sor.3

In a large NUMA system an even more trou-
bling issue arises: A function call uses barely
any memory on its own (apart from the stack).
A Microkernel must place the message into
queues. That queue must have a memory ad-
dress. The queue location needs to be care-
fully chosen in order to make the data acces-
sible in a fast way to the other operating sys-
tem component involved in the message trans-
fer. The complexity of making the determina-
tion where to allocate the message queue will
typically be higher than the message handling
overhead itself since such a determination will
involve consulting system tables to figure out
memory latencies. If the memory latencies are
handled by another component of the Micro-
kernel then queuing a message may require first
queuing a message to another subsystem. One

3There have been attempts to develop processors that
handle message queues but no commercially viable so-
lution exists. In contemporary High Performance Com-
puting messages based interfaces are common for inter
process communication between applications running on
different machines.

3



may avoid the complexity of memory place-
ment in small configurations with just a few
memory nodes but in a very large system with
hundreds of nodes the distances are a signifi-
cant performance issue. There is only a small
fraction of memory local to each processor and
so it is highly likely that a simple minded ap-
proach will cause excessive latencies.

It seems that some parts of the management of
memory latency knowledge cannot be handled
by a subsystem but each subsystem of the Mi-
crokernel must include the necessary logic to
perform some form of advantageous data place-
ment. It seems therefore that each Microker-
nel component must at least contain pieces of a
memory allocator in order to support large scale
memory architectures.

2.2 Isolation vs. integration of operating
system components

The fundamental idea of a Microkernel is to
isolate components whereas the monolithic
kernel is integrating all the separate subsystems
into one common process environment. The ar-
gument in favor of a Microkernel is that it al-
lows a system to be fail safe since a failure may
be isolated into one system component.

However, the isolation will introduce additional
complexities. Operating systems usually ser-
vice applications running on top of them. The
operating system must track the state of the ap-
plication. A failure of one key component typ-
ically includes also the loss of relevant state in-
formation about the application. Some Micro-
kernel components that track memory use and
open files may be so essential to the application
that the application must terminate if either of
these components fails. If one wanted to make
a system fail safe in a Microkernel environment
then additional measures may have to be taken
in order to guarantee that the application can

continue like check pointing. However, the iso-
lation of the operating system state into differ-
ent modules will make it difficult to track the
overall system state that needs to be preserved
in order for check pointing to work. The state
information is likely dispersed among various
separate operating system components.

The integration into a single operating system
process of a monolithic operating system en-
ables access to all state information that the op-
erating system keeps on a certain application.
This seems to be a basic requirement in order
to enable fail safe mechanisms like check point-
ing. Isolation of operating system components
may actually make reliable systems more diffi-
cult to realize.

Performance is also a major consideration in
favor of integration. Isolation creates barriers
for accessing operating system state informa-
tion that may be required in order for the op-
erating system to complete a certain task. Inte-
gration allows access to all state information by
any operating system component.

Monolithic kernels today are complex. An op-
erating system may contain millions of lines
of code (Linux currently has 1.4 million lines).
There is the impossibility of auditing all that
code in order to be sure that the operating sys-
tem stays secure. An approach that isolates op-
erating system components is certainly bene-
ficial to insure secure behavior of the compo-
nents. In a monolithic kernel methods have to
be developed to audit the kernel automatically
or manually by review. In the Linux kernel we
have the example of a community review net-
work that keeps verifying large sections of the
kernel. Problems can be spotted early to se-
cure the integrity of the kernel. However, such
a process may be only possible for community
based code development where a large number
of developers is available. A single company
may not have the resources to keep up the nec-
essary ongoing review of source code.

4



2.3 Modularization

Modularization is a mechanism to isolate op-
erating system components that may also oc-
cur in monolithic kernels. In Microkernels this
is the prime paradigm and modularization re-
sults in modules with a separate process state,
a separate executable and separate source code.
Each component can be separately maintained
and built. The strong modularization usually
does not work well for monolithic operating
systems. Any part of the operating system may
refer to information from another part. Mu-
tual dependencies exist between many of the
components of the operating system. There-
fore the operating system kernel has to be built
as a whole. Separate executable portions can
only be created by restricting the operating sys-
tem state information accessible by the sepa-
rated out module.

What has been done in monolithic operating
systems is the implementation of a series of
weaker modes of modularization at a variety of
levels.

2.3.1 Source code modularization

There are a number of ways to modularize
source code. Code is typically arranged into
a directory structure that in itself imposes some
form of modularization. Each C source code
piece can also be seen as a modular unit. The
validity of identifiers can be restricted to one
source module only (for example through the
static attribute in C). The scoping rules of
the compiler may be used to control access to
variables. Hidden variables are still reachable
within the process context of the kernel but
there is no way to easily reach these memory
location via a statement in C.

Header files are another typical use of modular-
ization in the kernel. Header files allow the ex-

posing of a controlled API to the rest of the ker-
nel. The other components must use that API
in order to use the exported services. In many
ways this is similar to what the strict isolation in
a Microkernel would provide. However, since
there is no limitation to message passing meth-
ods more efficient means of providing function-
ality may be used. For example it is typical
to define macros for performance sensitive op-
erations in order to avoid function calls. An-
other method is the use of in line functions that
also avoid function calls. Monolithic kernels
have more flexible ways of modularization. It
is not that the general idea of modularization is
rejected. It is just that the Microkernels carry
the modularization approach too far. The rigid-
ity of Microkernel design limits the flexibility
to design APIs that provide the needed perfor-
mance.

2.3.2 Loadable Operating System Modules

One way for monolithic operating systems to
provide modularity is through loadable operat-
ing system modules. This is possible by expos-
ing a binary kernel API. The loaded modules
must conform to that API and the kernel will
have to maintain compatibility to that API. The
loaded modules run in the process context of
the kernel but have only access to the rest of
the kernel through the exported API.

The problem with these approaches is that the
API becomes out dated over time. Both the
kernel and the operating system modules must
keep compatibility to the binary API. Over time
updated APIs will invariably become available
and then both components may have to be able
to handle different releases of the APIs. Over
time the complexity of API—and the neces-
sary workarounds to handle old version of the
API—increases.

Some open source operating systems (most no-

5



tably Linux) have decided to not support stable
APIs. Instead each kernel version exports its
own API. The API fluctuates from kernel re-
lease to kernel release. The idea of a stable
binary API was essentially abandoned. These
approaches work because of source code avail-
ability. Having no stable API avoids the work
of maintaining the API. Changes to the API are
easy since no guarantee of stability has been
given in the first place. If all the source code of
the operating system and of the loadable mod-
ules is available then changes to the kernel APIs
can be made in one pass through all the differ-
ent components of the kernel. This will work
as long as the API stays consistent within the
source of one kernel release but it imposed a
mandate to change the whole kernel on those
submitting changes to the kernel.

2.3.3 Loadable Drivers

A loadable driver is simply a particular in-
stance of a loadable operating system module.
The need to support loadable device drivers is
higher though than the need to support loadable
components of the operating system in general
since operating systems have to support a large
quantity of devices that may not be in use in a
particular machine on which the operating sys-
tem is currently running. Having loadable de-
vice drivers cuts down significantly in terms of
the size of the executable of the operating sys-
tem.

Loadable device drivers are supported by most
operating systems. Device drivers are a com-
mon source of failures since drivers are fre-
quently written by third parties with limited
knowledge about the operating system. How-
ever, even here different paradigms exist. In the
Linux community third party writing of drivers
is encouraged but then community review and
integration into the kernel source itself is sug-
gested. This usually means an extended review

process in which the third party device driver is
verified and updated to satisfy all the require-
ments of the kernel itself. Such a review pro-
cess increases the reliability and stability of de-
vice drivers and reduces the failure rate of de-
vice drivers.

Another solution to the frequent failure of de-
vice drivers is to provide a separate execution
context for these device drivers (as done in
some versions of the Microsoft Windows Op-
erating System). That way failures of device
drivers cannot impact the rest of the Operat-
ing system. In essence this is the same ap-
proach as suggested by proponents of Micro-
kernels. Again these concepts are used in a
restricted context. Having a special operating
system subsystem that creates a distinct context
for device drivers is expensive. The operating
system already provides such contexts for user
space. The logical path here would be to have
device drivers that run in user space thus avoid-
ing the need to maintain a process context for
device drivers.

3 Techniques Used to Scale Mono-
lithic Kernels

Proper serialization is needed in order for
monolithic operating systems—such as
Linux—to run on large processor counts.
Access to core memory structures needs to be
serialized in such a way that a large number
of processors can access and modify the data
as needed. Cache lines are the units in which
a processor handles data. Cache lines that
are only read are particularly important for
performance since these cache lines can be
shared. A cache line that is written has first
to be removed from all processors that have a
copy of that cache line. It is therefore desirable
to have data structures that are not frequently
written to.

6



The methods that were used to make Linux
scale are discussed in the following sections.
They are basically a variety of serialization
methods. As the system was scaled up to higher
and higher processor counts a variety of exper-
iments were performed to see how each data
structure needed to be redesigned and what
type of serialization would need to be employed
in order to reach the highest performance. De-
velopment of higher scalability is an evolution-
ary approach that involves various attempts to
address the performance issues that were dis-
covered during testing.

3.1 Serialization

The Linux kernel has two basic ways of lock-
ing. Semaphores are sleeping locks that require
a user process context. A process will go to
sleep and the scheduler will run other processes
if the sleeping lock has already been taken by
another process. Spinlocks are used if there is
no process context. Without the process con-
text we can only repeatedly check if the lock
has been released. A spinlock may create high
processor usage because the processor is busy
continually checking for a lock to be released.
Spinlocks are only used for locks that have to
be held briefly.

Both variants of locking come in a straight
lock/unlock and a reader/writer lock version.
Reader/writer locks allows multiple readers and
only one writer. Lock/unlock is used for simple
exclusion.

3.2 Coarse vs. Fine grained locking

The Linux kernel first became capable of sup-
porting multiprocessing by using a single large
lock , the Big Kernel Lock (BKL)4. Over time

4And the BKL still exists for some limited purposes.
For a theoretical discussion of such a kernel see chapter

coarse grained locks were gradually replaced
with finer grained locks. The evolution of the
kernel was determined by a continual stream
of enhancements by various contributors to ad-
dress performance limitations that were en-
countered when running common computing
loads. For example the page cache was initially
protected by a single global lock that covered
every page. Later these locks did become more
fine grained. Locks were moved to the pro-
cess level and later to sections of the address
space. These measures gradually increased per-
formance and allowed Linux to scale better and
better on successively larger hardware configu-
rations. Thereby it became possible to support
more memory and more processors.5

A series of alternate locking mechanisms were
proposed. In addition to the four types of lock-
ing mentioned above new locking schemes for
special situations were developed. For example
seq_locks emerged as a solution to the problem
of reading a series of values to determine sys-
tem time. seq_locks do not block, they simply
repeat a critical section until sequence counters
taken at the beginning and end of the critical
section indicate that the result was consistent.6

Creativity to develop finer-grained locking that
would reach higher performance was targeted
to specific areas of the kernel that were par-
ticularly performance sensitive. In some ar-
eas locking was avoided in favor of lock less
approaches using atomic operations and RCU
based techniques. The evolution of new lock-
ing approaches is by no means complete. In

9, “Master-Slave Kernels” in Kurt Schimmel, UNIX Sys-
tems for Modern Architectures: Symmetric Multiprocess-
ing and Caching for Kernel Programmers (New York:
Addison-Wesley: New York, 1994).

5See chapter 10, “Spin-locked Kernels” in Schimmel.
6For more details on synchronization under

Linux see Christoph Lameter, Effective Synchro-
nization on Linux/NUMA Systems (Palo Alto:
Gelato Foundation, 2005). Retrieved April 11,
2007. http://kernel.org/pub/linux/kernel/people
/christoph/gelato/gelato2005-paper.pdf

7



the area of page cache locking there exists—
for example—a project to develop ways to do
page cache accesses and updates locklessly via
a combination of RCU and atomic operations.7

The introduction of new locking methods in-
volves various tradeoffs. Finer grained locking
requires more locks and more complex code to
handle the locks the right way. Multiple locks
may be interacting in complex ways in order to
ensure that a data structure maintains its con-
sistency. The justification of complex locking
schemes became gradually easier as processor
speeds increased and memory speeds could not
keep up. Processors became able to handle
complex locking protocols using locking infor-
mation that is mostly in the processor caches to
negotiate access to data in memory that is rela-
tively expensive to access.

3.3 Per CPU structures

Access to data via locking is expensive. It is
therefore useful to have data areas that do not
require locking . One such natural area is data
that can only be accessed by a single proces-
sor. If no other processors use the data then no
locking is necessary. This means that a thread
of execution needs to be bound to one single
processor as long as the per cpu data is used.
The process can only be moved to another pro-
cessor if no per cpu data is used.

Linux has the ability to switch the ability to
reschedule a kernel thread off by disabling pre-
emption. A counter of the number of preemp-
tions taken is kept to allow nested access to
multiple per cpu data structures. The execution
thread will only be rescheduled to run on other
processors if the preemption counter is zero.

7See Nick Piggin, “A lock less page cache”
in Proceedings of the Linux Symposium: Volume
2 (Ottawa, Ontario: 2006). Retrieved 11 April
2006. https://ols2006.108.redhat.com/reprints /piggin-
reprint.pdf.

Each processor usually has its own memory
cache hierarchy. If a cache line needs to be
written then it needs to be first cleared from the
caches of all other processors. Thus dirtying a
cache line is an expensive operation if copies
of a cache line exist in the caches of other pro-
cessors. The cost of dirtying a cache line in-
creases with the number of processors in the
system and with the latency to reach memory.

Per cpu data has performance advantages be-
cause it is only accessed by a single cpu. There
will be no need to clear cache lines on other
processors. Memory for per cpu areas is typi-
cally set up early in the bootstrap process of the
kernel. At that point it can be placed in memory
that has the shortest latency for the processor
the memory is attached to. Thus memory ac-
cesses to per cpu memory are usually the fastest
possible. The per cpu cache lines will stay in
the cpu caches for a long time—even if they
are dirtied—since no other processor will in-
validate the cache lines by writing to per cpu
variables of another processor.8

A typical use of per cpu data is to manage in-
formation about available local memory. If a
process requires memory and we can satisfy it
from local memory that is tracked via struc-
tures in per cpu memory then the performance
of the allocator will be optimal. Most of the
Linux memory allocators are structured in such
a way to minimize access to shared memory lo-
cations. Typically it takes a significant imbal-
ance in memory use for an allocator to start as-
signing memory that is shared with other pro-
cessors. The sweet point in terms of scalability
is encountered when the allocator can keep on
serving only local memory.

Another use of per cpu memory is to keep
statistics. Maintaining counters about resource

8Not entirely true. In special situations (for example
setup and tear down of per cpu areas) such writes will
occur.

8



use in the system is necessary for the operating
system to be able to adjust to changing comput-
ing loads. However, these counters should not
impact performance negatively. For that reason
Linux keeps essential counters in per proces-
sor areas. These counters are periodically con-
solidated in order to maintain a global state of
memory in the system.

The natural use of per cpu data is the mainte-
nance of information about the processor stats
and the environment of the processor. This in-
cludes interrupt handling, where local memory
can be found, timer information as well as other
hardware information.

3.4 Per node structures

Per node structures are not as light weight as
per cpu variables because multiple processors
on one node may use that per node informa-
tion. Synchronization is required. However,
per node accesses stay within the same hard-
ware enclosure meaning that per node refer-
ence are to local memory which is more effi-
cient than accessing memory on other nodes.
It is advantageous if only local processors use
the per node structures. But other remote pro-
cessors from other nodes may also use any per
node structures since we already need locks to
provide exclusion for the local processors. Per-
formance is acceptable as long as the use from
remote processors is not excessive.

A node in the NUMA world refers to a section
of the system that has its own memory, proces-
sors and I/O channels. It is natural to use per
node structures to manage the resources of such
a NUMA node. Allocators typically have first
of all per cpu queues where some objects are
held ready for immediate access. However, if
those per cpu queues are empty then the allo-
cators will fall back to per node resources and

attempt to fill up their queues first from the lo-
cal node and then—if memory gets tight on one
node—from remote nodes.

Performance is best if the accesses to per node
structures stay within the node itself. Off node
allocation scenarios usually involve a degrada-
tion in system performance but that may be
tolerable given particular needs of an applica-
tion. Applications that must access more mem-
ory than available on one node will have to deal
with the effects of intensive off node memory
access traffic. In that case it may be advisable
to spread out the memory accesses evenly via
memory policies in order to not overload a sin-
gle node.

3.5 Lock locality

In a large system the location of locks is a
performance critical element. Lock acquisi-
tion typically means gaining exclusive access
to a cache line that may be heavily contended.
Some processors in the system may be nearer
to the cache line than others. These will have
an advantage over the others that are more re-
mote. If the cache line becomes heavily con-
tended then processes on remote nodes may not
be able to make much progress (starvation). It
is therefore imperative that the system imple-
ment some way to give each processor a fair
chance to acquire the cache line. Frequently
such an algorithm is realized in hardware. The
hardware solutions have turned out to be effec-
tive so far on the platforms that support high
processor counts. It is likely though that com-
modity hardware systems now growing into the
space earlier only occupied by the highly scal-
able platforms will not be as well behaved. Re-
cent discussions on the Linux kernel mailing
lists indicate that these may not come with the
advanced hardware that solve the lock locality
issues . Software solutions to this problem—
like the hierarchical back off lock developed by

9



Zoran Radovic—may become necessary.9

3.6 Atomic Operations

Atomic operations are the lowest level synchro-
nization primitives. Atomic operations are used
as building blocks for higher level constructs.
The locks mentioned earlier are such higher
level synchronization constructs that are real-
ized using atomic operations.

Linux defines a rich set of atomic operations
that can be used to improvise new forms of
locking. These operations include both bit op-
erations and atomic manipulation of integers.
The atomic operation themselves can be used
to synchronize events if they are used to gen-
erate state transitions. However, the available
state transitions are limited and the set of state
transitions observable varies from processor to
processor. A library of widely available state
transitions via atomic operations has been de-
veloped over time. Common atomic opera-
tions must be supported by all processors sup-
ported by Linux. However, some of the rarer
breeds of processors may not support all nec-
essary atomic operations. Emulation of some
atomic operations using locking may be nec-
essary. Ironically the higher level constructs
are then used to realize low level atomic opera-
tions.

Atomic operations are the lowest level of access
to synchronization. Many of the performance
critical data structures in Linux are customar-
ily modified using atomic operations that are
wrapped using macros. For example the state
of the pages in Linux must be modified in such
a way. Kernel components may rely on state
transitions of these flags for synchronization.

9Zoran Radovic, Software Techniques for Distributed
Shared Memory (Uppsala: Uppsala University, 2005),
33-54.

The use of these lower level atomic primitives
is complex and therefore the use of atomic op-
erations is typically reserved for performance
critical components where enough human re-
sources are available to maintain such cus-
tom synchronization schemes. If one of these
schemes turns out to be unmaintainable then it
is usually replaced by a locking scheme based
on higher level constructs.

3.7 Reference counters

Reference counters are a higher level con-
struct realized in Linux using atomic opera-
tions. Reference counters use atomic increment
and decrement instructions to track the number
of uses of an object in the kernel. That way con-
current operation on objects can be performed.
If a user of the structure increments the ref-
erence counter then the object can be handled
with the knowledge that it cannot concurrently
be freed. The user of a structure must decre-
ment the reference counter when the object is
no longer needed.

The state transition to and from zero is of par-
ticular importance here since a zero counter is
usually used to indicate that no references exist
anymore. If a reference counter reaches zero
then an object can be disposed and reclaimed
for other uses.

One of the key resources managed using ref-
erence counters are the operating system pages
themselves. When a page is allocated then it is
returned from the page allocator with a refer-
ence count of one. Over the lifetime multiple
references may be established to the page for a
variety of purposes. For example multiple ap-
plications may map the same memory page into
their process memory. The function to drop a
reference on a page checks whether the refer-
ence count has reached zero. If so then the page
is returned to the page allocator for other uses.

10



One problem with reference counters is that
they require write access to a cache line in the
object. Continual establishment of new refer-
ences and the dropping of old references may
cause cache line contention in the same way
as locking. Such a situation was recently ob-
served with the zero page on a 1024 processor
machine. A threaded application began to read
concurrently from unallocated memory (which
causes references to the zero page to be es-
tablished). It took a long time for the appli-
cation to start due to the cache line with the
reference counter starting to bounce back and
forth between the caches of various processors
that attempted to increment or decrement the
counter. Removal of reference counting for the
zero page resulted in dramatic improvements in
the application startup time.

The establishment of a reference count on an
object is usually not sufficient in itself because
the reference count only guarantees the contin-
ued existence of the object. In order to seri-
alize access to attributes of the object one still
will have to implement a locking scheme. The
pages in Linux have an additional page lock
that has to be taken in order to modify certain
page attributes. The synchronization of page
attributes in Linux is complex due to the inter-
action of the various schemes that are primar-
ily chosen for their performance and due to the
fluctuation over time as the locking schemes are
modified.

3.8 Read-Copy-Update

RCU is yet another method of synchronization
that becomes more and more widespread as
the common locking schemes begin to reach
their performance limits. The main person de-
veloping the RCU functionality for Linux has
been Paul McKenney.10 The main advantage

10See his website at
http://www.rdrop.com/users/paulmck/RCU/. Re-

of RCU over a reference counter is that object
existence is guaranteed without reference coun-
ters. No exclusive cache line has to be acquired
for object access which is a significant perfor-
mance advantage.

RCU accomplishes that feat through a global
serialization counter that is used to establish
when an object can be freed. The counter only
reaches the next state when no references to
RCU objects are held by a process. Objects can
be reclaimed when they have been expired. All
processes referring to the object must have only
referenced the object in earlier RCU periods.

RCU is frequently combined with the use of
other atomic primitives as well as the exploit-
ing of the atomicity of pointer operations. The
combination of atomic operations and RCU can
be tricky to manage and it is not easy to develop
a scheme that is consistent and has no “holes”
where a data structure can become inconsistent.
Projects to implement RCU measures for key
system components can take a long time. For
example the project to develop a lock less page
cache using RCU has already taken a couple of
years.11

3.9 Cache line aliasing / placement

Another element necessary to reach high per-
formance is the careful placement of data into
cache lines. Acquiring write access to a cache
line can cause a performance issue because it
requires exclusive access to the cache line. If
multiple unrelated variables are placed in the
same cache line then the performance of the

trieved 12 April, 2007. A recent publications is Thomas
E. Hart, Paul E. McKenney and Angela Demke Brown.
Making Lockless Synchronization Fast: Performance
Implications of Memory Reclaim (Parallel and Dis-
tributed Processing Symposium, 2006) which contains
an extensive bibliography.

11See the earlier mentioned work by Nick Piggin.

11



access to one variable may be affected by fre-
quents updates of another (false aliasing) be-
cause the cache line may need to be frequently
reacquired due to eviction to exclusive accesses
by other processors. A hotly updated variable
may cause a frequently read variable to become
costly to access because the cache line can-
not be continually kept in the cache hierarchy.
Linux solves this issue by providing a facility
to arrange variables according to their access
patterns. Variables that are commonly read and
rarely written to can be placed in a separate sec-
tion through a special attribute. The cache lines
from the mostly read section can then be kept in
the caches of multiple processors and are rarely
subject to expulsion due to a write request.

Fields of key operating system structures are
similarly organized based on common usage
and frequency of usage. If two fields are fre-
quently needed in the same function then it is
advantageous to put the fields next to each other
which increases the chance that both are placed
in the same cache line. Access to one field
makes the other one available. It is typical to
place frequently used data items at the head of
a structure to have as many as possible avail-
able with a single cache line fetch. In order
to guarantee the proper cache line alignment of
the fields it is customary to align the structure
itself on a cache line boundary.

If one can increase the data density in the cache
lines that are at the highest level of the cpu
cache stack then performance of the code will
increase. Rearranging data in proper cache
lines is an important measure to reach that goal.

3.10 Controlling memory allocation

The arrangement in cache lines increases the
density of information in the cpu cache and can
be used to keep important data near to the pro-
cessor. In a large system memory is available at

various distances to a processor. And the larger
the system the smaller the amount of memory
with optimal performance for a processor. The
operating system must attempt to provide fast
memory so that the processes running on the
processor can run efficiently.

However, the operating system can only pro-
vide heuristics. The usual default is to allo-
cate memory as local to the process as possible.
Such an allocation method is only useful if the
process will keep on running exclusively on the
initial processor. Multithreaded applications
may run on multiple processors that may have
to access a shared area of memory. Care must
be taken about how shared memory is allocated.
If a process is started on a particular proces-
sor and then allocates the memory it needs then
the memory will be local to the startup proces-
sor. The application may then spawn multiple
threads that work on the data structures allo-
cated. The new processes will be moved to dis-
tant processors and will now overwhelmingly
referencing remote memory that is not placed
optimally. Moreover all new processes may
concurrently access the memory allocated on
the node of the initial processor which may ex-
haust the processing power of the single mem-
ory node.

It is advisable that memory be allocated dif-
ferently in such scenarios. A common solu-
tion is to spread the memory out over all nodes
that run processes for the application. This will
balance the remote cache line processing load
over the system. However, the operating sys-
tem has no way of knowing what the processes
of the application will do. Linux has a cou-
ple of subsystems that allow the processes to
specify memory allocation policies and alloca-
tion constraints for a process. Memory can be
placed optimally if an application sets up the
proper policies depending on how it will access
the data. However, this memory control mecha-
nism is not standardized. One will have to link

12



programs to special libraries in order to make
use of these facilities. There are new languages
on the horizon though that may integrate the
locality specification into the way data struc-
tures are defined.12 These new languages may
eventually standardize the specification of al-
location methods and avoid the use of custom
libraries.

3.11 Memory coverage of Translation
Lookaside Buffers (TLB)

Each of the processes running on modern pro-
cessors has a virtual address space context. The
address space context is provided by TLB en-
tries that are cached by the processor in order to
allow a user process access to physical memory.
The amount of TLB entries in a processor is
limited and the limit on the number of TLB en-
tries in turn limits the amount of physical mem-
ory that a processor may access without incur-
ring a TLB miss. The size of available physical
memory is ever growing and so the fraction of
memory physically accessible without a TLB
miss is ever shrinking.

Under Linux TLB misses are a particular prob-
lem since most architectures use a quite small
page size of 4 kilobytes. The larger systems
support 16 kilobytes. On the smaller systems—
even with a thousand TLB entries—one will
only be able to access 4 megabytes without a
TLB miss. TLB miss overhead varies between
processors and reaches from a few dozen clock
cycles if the corresponding page table entry
is in the cache (Intel-64) to hundred and spo-
radically even a few thousand cycles on ma-
chines that require the implementation of TLB
lookups as an exception handler (like IA64).

For user processes Linux is currently restricted
to a small 4k page size. In kernel space an

12As realized for example in Unified Parallel C.

attempt is made to directly map all of mem-
ory via 1-1 mappings. These are TLB entries
that provide no translation at all. The main use
of these TLBs is to specify the access parame-
ters for kernel memory. Many processors also
support larger page size. It is therefore com-
mon that the kernel itself use larger TLB entries
for its own memory. This increases the TLB
coverage when running in kernel mode signif-
icantly. The sizes in use on larger Linux ma-
chines (IA64) are 16M TLB entries whereas the
smaller (Intel-64 based) machines provide 2M
TLB entries to map kernel memory.

In order to increase the memory coverage an-
other subsystem has been added to Linux that is
called the hugetlb file system. On Intel-64 this
will allow the management of memory mapped
via 2M TLB entries. On IA64 memory can
be managed in a variety of sizes from 2M to
1 Gigabytes. However, hugetlb memory can-
not be treated like regular memory. Most im-
portantly files cannot be memory mapped us-
ing hugetlbfs. I/O is only possible in 4 kilobyte
blocks through buffered file I/O and direct I/O.
Projects are underway to use huge pages for ex-
ecutables and provide transparent use of huge
pages for process data.13

A Microkernel would require the management
of additional address spaces via additional TLB
entries that would compete for the limited TLB
slots in a processor. TLB pressure would in-
crease and we would have more overhead com-
ing about through the separate address spaces
of a Microkernel that would degrade perfor-
mance.

13H.J.Lu, Rohit Seth, Kshitij Doshi and Jantz Tran,
“Using Hugetlbfs for Mapping Application Text Re-
gions” in Proceedings of the Linux Symposium: Volume
2 (Ottawa: Ontario, 2006), 75-82.

13



4 Multicore / Chip Multithreading

Recent development are leading to increased
multi threading on a single processor. Multiple
cores are placed on a single chip. The inabil-
ity to increase the clock frequency of proces-
sors further leads to the development of pro-
cessors that are able to execute a large num-
ber of threads concurrently. In essence we see
the miniaturization of contemporary supercom-
puters on a chip. The complex interaction of
the memory caches of multi core processors
will present additional challenges to organizing
memory and to balancing of a computing load
to run with maximum efficiency. It seems that
the future is owned by multithreaded applica-
tions and operating system kernels that have to
use complex synchronization protocols in order
to extract the maximum performance from the
available computational resources.

Rigid Microkernel concepts require isolation of
kernel subsystems. It is likely going to be a
challenge to implement complex locking proto-
cols between kernel components that can only
communicate via messages or some form of in-
ter process communication. Instead processes
wanting to utilize the parallel execution capa-
bilities to the fullest must have a shared address
space in which it is possible to realize locking
schemes as needed to deal with the synchro-
nization of the individual tasks.

5 Processes contention for system
resources

The scaling of individual jobs on large system
depends on the use of shared resources. Pro-
cesses that only access local resources and that
have separate address spaces run with compa-
rable performance to that on smaller machines
since there is minimal locking overhead. On a

machine with a couple of thousand processors,
one can run a couple of thousand independent
processes that all work with their own memory
without scaling concerns. This ability shows
that the operating system itself has been opti-
mized to fully take advantage of process isola-
tion for scaling. The situation becomes differ-
ent if all these processes share a single address
space. In that case certain functions—like the
mapping of a page into the common memory
space of these processes—must be serialized
by the operating system. Performance bottle-
necks can result if many of the processes per-
form operations that require the same operating
system resource. At that point the synchroniza-
tion mechanisms of the operating system be-
come key to reduce the performance impact of
contention for operating system resources.

However, the operating system itself cannot
foresee in detail how processes will behave.
Policies can be specified describing how the op-
erating system needs to manage resources but
the operating system itself can only provide
heuristics for common process behavior. In-
variably sharing resources in a large supercom-
puter for complex applications requires careful
planning and proper setup of allocation policies
so that bottleneck can be avoided. It is nec-
essary to plan how to distribute shared mem-
ory depending on the expected access patterns
to memory and common use of operating sys-
tem resources. Applications can be run on su-
percomputers without such optimizations but
then memory use, operating system resource
use may not be optimal.

6 Conclusion

A monolithic operating system such as Linux
has no restrictions on how locking schemes can
be developed. A unified address space exists
that can be accessed by all kernel components.

14



It is therefore possible to developed a rich mul-
titude of synchronization methods in order to
make best use of the processor resources. The
freedom to do so has been widely used in the
Linux operating system to scale to high proces-
sor counts. The locking methodology can be
varied and may be alternatively coarse grained
or more refined depending on the performance
requirements for a kernel component. Critical
operating system paths can be successively re-
fined or even be configurable for various dif-
ferent usage scenarios. For example the page
table locking scheme in Linux is configurable
depending on the number of processors. For a
small number of processors there will be only
limited contention on page table and therefore
a single page table lock is sufficient. If a large
number of processors exists in a system then
contention may be an issue and having smaller
grained locks is advantageous. For higher pro-
cessor counts the Linux kernel can implement a
two tier locking scheme where the higher page
table layers are locked by a single lock whereas
the lowest layer has locks per page of page ta-
ble entries. The locking scheme becomes more
complicated—which will have a slight negative
performance impact on smaller machines—but
provides performance advantages for highly
concurrent applications.

As a result the Linux operating system as a
monolithic operating system can adapt surpris-
ingly well to high processor counts and large
memory sizes. Performance bottlenecks that
were discovered while the system was gradu-
ally scaled up to higher and higher processor
counts were addressed through alternating ap-
proaches using a variety of locking approaches.
In 2007 Linux supports up to 4096 processors
with around 16 terabytes of memory on 1024
nodes. Configurations of up to 1024 proces-
sors are supported by commercial Linux dis-
tributions. There are a number of supercom-
puter installation that use these large machines
for scientific work at the boundaries of contem-

porary science.

The richness of the locking protocols that made
the scaling possible requires an open access
policy within the kernel. It seems that Mi-
crokernel based designs are fundamentally in-
ferior performance wise because the strong iso-
lation of the components in other process con-
texts limits the synchronization methods that
can be employed and causes overhead that the
monolithic kernel does not have to deal with. In
a Microkernel data structures have to be partic-
ular to a certain subsystem. In Linux data struc-
tures may contain data from many subsystems
that may be protected by a single lock. Flexibil-
ity in the choice of synchronization mechanism
is core to Linux success in scaling from embed-
ded systems to supercomputer. Linux would
never have been able to scale to these extremes
with a Microkernel based approach because of
the rigid constraints that strict Microkernel de-
signs place on the design of operating system
structures and locking algorithms.

15



7 Bibliography

Catanzaro, Ben. Multiprocessor Systems Ar-
chitectures: A Technical Survey of Multiproces-
sor/ Multithreaded Systems using SPARC, Mul-
tilevel Bus Architectures and Solaris (SunOS).
Mountain View: Sun Microsystems, 1994.

El-Ghazawi, Tarek, William Carlson, Thomas
Sterling, Katherine Yelick. UPC: Distributed
Shared-Memory Programming. Wiley Inter-
science, 2003.

Hart, Thomas E., Paul E. McKenney and An-
gela Demke Brown. Making Lockless Syn-
chronization Fast: Performance Implications of
Memory Reclaim. Parallel and Distributed Pro-
cessing Symposium, 2006.

Hwang, Kai and Faye A. Briggs. Computer Ar-
chitecture and Parallel Processing. McGraw-
Hill, New York: 1984.

Lameter, Christoph. Effective Synchroniza-
tion on Linux/NUMA Systems. Palo Alto:
Gelato Foundation, 2005. Retrieved April 11,
2006. http://kernel.org/pub/linux/kernel/people
/christoph/gelato/gelato2005-paper.pdf

Milojic, Dejan S. Implementation for the Mach
Microkernel. Friedrich Vieweg & Sohn Verlag,
1994.

Mosberger, David. Stephane Eranian. ia-64
linux kernel: design and implementation. New
Jersey: Prentice Hall, 2002.

Piggin, Nick. “A lock less page
cache” in Proceedings of the Linux
Symposium: Volume 2 (Ottawa, On-
tario: 2006). Retrieved 11 April 2006.
https://ols2006.108.redhat.com/reprints/piggin-
reprint.pdf.

Radovic, Zoran. Software Techniques for Dis-
tributed Shared Memory. Uppsala: Uppsala
University, 2005.

Roch, Benjamin. Monolithic kernel. vs.
Microkernel. Retrieved 9 April 2007.
http://www.vmars.tuwien.ac.at/courses/akti12
/journal/04ss/article_04ss_Roch.pdf.

Schimmel, Kurt. UNIX Systems for Modern
Architectures: Symmetric Multiprocessing and
Caching for Kernel Programmers. New York:
Addison-Wesley, 1994.

Tannenbaum, Andrew S. Modern Operating
Systems. New Jersey: Prentice Hall, 1992.

Tannenbaum, Andrew S., Albert S. Woodhul.
Operating Systems Designs and Implementa-
tion (3rd Edition). New Jersey: Prentice-Hall,
2006.

Lu, H. J., Rohit Seth, Kshitij Doshi and Jantz
Tran. “Using Hugetlbfs for Mapping Appli-
cation Text Regions” in Proceedings of the
Linux Symposium: Volume 2 (Ottawa: Ontario,
2006).

16


