Extreme High Performance Computing
or Why Microkernels Suck

Ottawa Linux Symposium

2007-06-30

Christoph Lameter, Ph.D.
christoph@lameter.com

Technical Lead Linux Kernel Software
Silicon Graphics, Inc.



Introduction

@ Short intro to High Performance Computing

@ How high does Linux currently scale

@ Conceptual comparison: microkernel and monolithic
OS (Linux)

@ Fundamental scaling problems of a microkernel based
architecture

@ Monolithic kernel are also modular

@ \WWhy does Linux scale so well and adapt to ever larger
and more complex machines

@ Current issues

@ Conclusion: Microkernel is an idea taken to unhealthy
extremes.




Applications of High Performance Computing

@ Solve complex computationally expensive problems

@ Scientific Research
@ Physics (quantum mechanics, nuclear phenomena)
@ Cosmology
@ Space
@ Biology (gene analysis, virus, bacteria etc)

@ Simulations

@ Weather (Hurricanes)
@ Study of molecules and new substances

@ Complex data analysis
@ 3D design

@ Interactive modeling (f.e. car design, aircraft design)
@ Structural analysis.




Dark Matter Halo Simulation for the Milky Way




Black Hole Simulation




Carbon Nanotube-polymer composite material




Forecast of Hurricane Katrina

PMET

30

Storm Total Rain Sat1

-

o,

-

NasFville™
~
Lz
-

-
L g

.

R s

13 AMET

IR Sat Sun 8



Airflow Simulations

GE 20 EMGIMNE AIRFILOW

LE L1 .

O -
O8

TasTFTITIETT

=

-
=
BT
=
~paiih
- v

e o ana




High Performance Computer Architectures

@ Supercomputer
@ Single memory space
@ NUMA architecture. Memory nodes / Distant memory.
@ Challenge to scale the Operating System
@ Cluster
@ Multiple memory spaces
@ Networked commodity servers
@ Network communication critical for performance
@ Challenge to redesign applications for a cluster
@ Mainframe
@ Singe uniform memory space with multiple processors
@ Scalable I/0O subsystem
@ Mainly targeted to I/O transactions

@ Reliable and maintainable (24 by 7 availability)
N T - N T - NI T




NASA Columbia Supercomputer with 10240
processors




Current Maximum Scaling of a single Linux Kernel

@ This is no cluster
@ Single address space
@ Processes communicate using shared memory
@ Currently deployed configurations
@ Single kernel boots 1024 processors
@ 8 Terabyte of main memory
@ 10GB/sec I/O throughput
@ Known working configurations
@ 4096 processors
@ 256 TB memory
@ Next generation platform
@ 16384 processors
@ 4-8 Petabyte (250 bytes) Memory




Monolithic kernel vs micro kernel

Application Application

|




Microkernels vs. Monolithic

@ Microkernel claims
@ Essential to deal with scalability issues.
@ Allow a better designed system

@ Essential to deal with complexity of large Operating
systems

@ Make the system work reliable
@ However
@ Large scale microkernel systems do not exist

@ Research systems exist up to 24p (an unconfirmed
rumors about 64p).

@ |PC overhead vs. Monolithic kernels function calls
@ Need for context switches within the kernel
@ Transfer issues of messages.
@ Significant effort is spend on optimizing around these.

L T Y N TG "N TN



Isolation vs. Integration

@ Microkernel isolates kernel components

@ More secure from failure

@ Defined API to between components of a kernel
@ Monolithic OS

@ Large potentially complex code

@ Universal access to data

@ API implicitly established by function call convention
@ Difficulty of keeping application state in Microkernels

@ Performance issues by not having direct access to
relevant data from other subsystems.

@ Monolithic OS like Linux also have isolation methods
@ Source code modularization
@ Binary modules

NI TG - NI TG - N



@ Monolithic kernel has flexible APlIs if no binary APls
are supported like in Linux

@ Microkernel must attempt to standardize on APls to
ensure that operating system components can be
replaced.

@ Thus a monolithic kernel can evolve faster than

microkernel.

I TR Ty <




Competing technologies within a Monolithic Kernel

@ Variety of locks that can be used to architect
synchronization methods

@ Atomic operations
@ Reference counts
@ Read Copy Update
@ Spinlocks

@ Semaphores

@ New Approaches to locking are frequently introduces
to solve particular hard issues.

]



Scaling up Linux

@ Per cpu areas

@ Per node structures

@ Memory allocators aware of distance to memory

@ Lock splitting

@ Cache line optimization

@ Memory allocation control from user space

@ Sharing is a problem

@ Local Memory is the best

@ Larger distances mean larger systems are possible

@ The bigger the system the smaller the portion of local
memory.

"L ™Y - "L ™Y - A T



Single Processor System

@ All computation on a
single processor

@ Only parallelism that
needs to be managed is
with the I/O subsystem

@ Memory is slow
compared to the

i

Cachelines

Processor. i

@ Speed of the system
depends on the Memory
effectiveness of the

cache Y

@ Memory accesses have
the same performance.




Symmetric Multi Processing (SMP)

@ Multiple processors

@ New need for
synchronization between
pProcessors

@ Cache control issues
@ Performance enhancement

through multiple processors Cahgss
working independently i

@ Cacheline contention

@ Data layout challenges: N
shared vs. processor local

@ All memory access have \

the same performance dr

Subsystem




Non Uniform Memory Architecture (NUMA)

Node 1

Multiple SMP like sys-

Remote Memory
tems called “nodes”

Cachelines Storage
Subsystem

Memory at various dis-
tances (NUMA)

Node 2

Node Local from node
2 processor 3

Cachelines

Interconnect ‘ e
MESI type cache co- m =
‘ Cachelines o

herency protocols S
SLIT tables Node 3 2
Memory Placement ‘ - %g
@ D

Z

Node 4

Network
Interface

Device Local

I i
L

ol ‘. —F'-—.F i

A
-
3
|
i
N |
3



Allocators for a Uniform Memory Architecture

o Page ChunkS Process Anonymous
Page fg;ghe Memory Pages
@ Page allocator = _ -
@ Anonymous memory @
@ File backed memory Page
: Allocator
@ Swapping @
@ Slab allocator )
@ Device DMA allocator v
@ Page Cache Kernel Core - A
3 read() / erte() Device Drivers =
@ Mmapped I/O.

N T Y N T o & *J‘.



NUMA Allocators

@ Memory management per node

@ Memory state and possibilities of allocation
@ Traversal of the zonelist (or nodelist)

@ Process location vs. memory allocation

@ Scheduler interactions

@ Predicting memory use?

@ Memory load balancing

@ Support to shift the memory load

I TR Ty <



