Bazillions of Pages

The Future of Memory Management under Linux

Christoph Lameter
Silicon Graphics, Inc.
christoph@lameter.com

Abstract

A new computer system running Linux is likely
equipped with at least 4 GB of memory. The Linux VM
manages this memory in 4 KB chunks. So the Linux
VM has to manage 1 million memory chunks. There
are some people who already run configurations with
tens or hundreds of gigabytes of memory. As time pro-
gresses these large memory sizes are going to become
more and more common. The Linux VM will have to
manage more and more pages. For effective memory
reclaim these pages may have to be repeatedly scanned
in order to determine the least recently used pages.

It is not surprising that the VM starts to struggling with
the increasing amount of work. At 8 to 16 GB one can
observe live lock situations with certain loads. A num-
ber of possible solutions to this problem are considered:
One is Rik van Riel’s work of optimizing the way pages
are handled in the VM, another is Andrea Arcangeli’s
increase in the base page size. And yet another is to
make the page size dynamic in order to allow subsys-
tems to choose the page size that is most beneficial for a
given load.

1 Introduction

1.1 4 megabytes are lots of memory

My first Linux installation was done using a set of floppy
disks containing Slackware (1.0.4) and a strange kernel
version that was numbered 0.99 followed by some trail-
ing letters and numbers that I cannot remember. It was
1993 and I had to download 12 disk images through a
dial up line which took almost a week. The download
was using an advanced file transfer protocol named Z-
modem. The Slackware software was installed on a ma-
chine that had a 386SX processor (no floating point unit)

and 4 megabytes of memory. The machine was already
a big step forward from my first computer, a PET 2001
(Commodore Business Machines) that I gained access
to in 1978. The PET had 4k of memory. The 386SX
machine was great and I thought really had plenty of
memory especially since MS-DOS could only use 640
kilobytes.

1.2 More and more memory

Fast forward to today and now I work at Silicon Graph-
ics on making Linux to run well on Supercomputers.
This adds another strange twist since I get to work with
the machines that have thousands of times more memory
than the average computer. SGI has customers with ma-
chines equipped with several petabytes of RAM. And
given the way the capacities develop: It may take less
than a decade until we get to machines that have mem-
ory sizes in the exabyte range.!

So there is the chance of seeing how Linux handles with
super large memory sizes years before they are avail-
able in smaller computers for everyone. The time delay
is about a decade or so before these become available in
an average computer. Linux servers with one terabyte of
RAM will likely become available around 2010, mem-
ory sizes of a petabyte may be possible by 2018. Ma-
chines like that will also have a couple of hundred pro-
cessors (cores?) accessing that memory.?

I see how Linux runs with large memory sizes years be-
fore the same memory sizes are available to the general
public. If there is a hard issue related to memory then
it frequently ends up on my desk. The advantage for

!One exabyte has a million gigabytes and a petabyte a thousand
gigabyte.

2See Intel’s plans for large numbers of cores. Find the publica-
tion that mentions the year 2015 in the bibliography.

Linux is that we have a chance to prepare the Linux ker-
nel for the upcoming memory issues years before they
become a problem for the general users of Linux.

One of the areas of concern is that memory sizes keep
growing while processor speeds and memory access
speeds are mostly stagnating. Memory management in
Linux occurs by managing a small piece of meta data
(the struct page) for each 4k chunk of memory (a page).
Whenever the kernel needs to perform I/O, when a page
fault occurs or when the kernel is handling memory in
some other way then the meta data in struct page is used
for synchronization and for tracking of the state of the

page.
2 The memory problem

The available computing resources to manage the meta
data in the page struct are shrinking because memory
sizes grow faster than processing speeds. Each new gen-
eration of hardware grows the number of 4k pages that
have to be managed. The VM therefore has to deal with
an ever growing number of pages (bazillions of pages
because bazillions is an undetermined large number). It
looks like the trend will continue for the foreseeable fu-
ture.’

As a result we see critical OS activities like memory
reclaim taking a larger and larger portion of computing
resources. For memory reclaim the page expiration is
based on examining all the the meta data structures (in
struct page) at some point. I/O bottlenecks also develop
because each 4k page has to be handled separately for
DMA transfers.*

The larger the dataset that is streamed through the sys-
tem becomes, the larger the scaling issues that we will
encounter because of the the meta data that has to be
kept for each 4k page that is processed by the I/O layer.

Table 1 shows the development of memory sizes, pro-
cessor capabilities and memory access speed for an av-
erage computer (simplified). The number of pages in-

3Maybe there will be a plateau when the limits of what is ad-
dressable within a 64 bit address space (at 8 exabytes) is reached.
Not likely to occur until 2024 or so for the average Linux server but
I would expect memory sizes like that to be reached by 2014 in the
supercomputer area.

4Supercomputer 1/0 is expected to be able to saturate the links
to the storage subsystem which contains large RAID configurations
(thousands of disks). Being able to just saturate the bandwidth of a
single hard disk is certainly not acceptable.

Year Mem Pages ClckFreq | Cores | MSpeed
1993 4MB 1024 16Mhz 1 70ns
2001 | 32MB 8192 300Mhz 1 60ns
2005 1GB 256000 1-2 Ghz 1 55ns
2008 4GB 1 million 2-3Ghz 2 50ns
2010? | 64GB | 16 million | 2-3Ghz 4-8 45ns?
20207 | 128TB | 32 billion 3-4Ghz 128 40ns?

Table 1: Memory sizes and processors

creases faster than the number of cores and the speed of
memory. Various hardware tricks are used in memory
subsystems to improve speed because we cannot change
the basic physical limitations of how DRAM works.
Many of the optimizations are based on the assumption
of linear memory accesses, other optimizations are in-
creasing the number of bits that can be fetched simul-
taneously. Processors have to manage larger and larger
CPU caches in multiple layers (L1, L2, L3 maybe L4
soon?) to avoid the penalty of memory accesses. Mem-
ory accesses become more expensive as the distance be-
tween the processor and memory increases. The opti-
mization measures make a relatively small amount of
memory accessible without long latencies and favor lin-
ear accesses to memory.

In such an environment memory locality becomes an
important consideration for improving the speed of the
computer system as a whole. The management of ever
larger lists of page structs referring to pages which over
time become distributed seemingly randomly all over
the memory of the system does not have a beneficial
effect on performance.

The ratio of cache to memory size is also falling follow-
ing a similar trajectory. The cost of a random memory
access will become more and more expensive over time
since the chance of hitting an object in the CPU cache
by chance is reduced.

The situation for Supercomputer configurations is worse
(the following data is for SGI Altix 3700/4700) because
the memory sizes are much larger while the processor
and memory are similar to other contemporary hard-
ware. On the other hand the number of processors is
larger but the number of processors also grows slower
than the total amount of memory. There is the additional
complexity of scaling the synchronization methods:

Table 2 shows the development of the sizes for Super-
computers. To some extend the massive amount of page

Year | Mem | Procs PageSize Pages
2004 | 8TB 512 16K (ia64) | 512 million
2006 | 16TB | 1024 16K 1 billion
2007 | 4PB 2048 16k 256 billion
2008 | 4PB 4096 64k 64 billion
2008 | 16TB | 4096 4k(x86) 4 billion
20147 | 1EB? | 163847 | 4k(x86) 256 trillion

Table 2: Supercomputer memory sizes and processors

meta data was reduced on Itanium by increasing the
page size. A 16k page size means that there is only
one fourth of the pages to worry about. The I/O subsys-
tems can perform linear DMA transfers for 16k chunks
which reduces the number of scatter gather entries that
have to be managed by the storage subsystem. The in-
crease to a page size of 64k in 2008 decreases the man-
agement overhead again but the overall number of pages
still stays comparatively high. We noticed that configu-
rations with over 2 thousand processors only run reliably
with 64k pages. Otherwise the VM regularly gets into
fits while handling large queues of pages even if running
an HPC load that requires minimal 1/O.

The successor to the Altix series will no longer be based
on Itanium processors but on x86 architecture. We no
longer can utilize large page sizes but have to use the
only page size that x86 supports which is 4kb. Ironi-
cally these systems are intended to support even larger
memory sizes but the current physical addressing capa-
bilities of the Xeon line limit the amount of physical
memory that a single Linux instance will be able to ac-
cess. The address size limitations effectively reduce the
number of pages to be managed by a Linux instance but
will force the construction of large shared memory ma-
chines running a number of Linux instances that each
live in their own 16TB memory segment. Then we need
specialized hardware that bridges between the Linux in-
stances. Not a nice picture but the limit on the physical
memory that can be addressed by a processor also limits
the number of page structs that have to be managed by
the kernel.

The address space sizes are likely to be increased as pro-
cessors development continues. The future generations
of processor will then be able to reach similar memory
capacities as the Itanium based system are capable of
today. The number of page structs that have to be man-
aged by the VM makes a jump of several orders for sim-
ilar memory sizes on Itanium versus Xeon. There are at

least 4 times more page structs compared to an Itanium
system with a 16k page size or even 16 times more page
structs for systems currently running 64k page size.

2.1 The VM heart attack

Lets consider a typical scenario that can lead to a sys-
tem appearing to live lock. The more processors and the
more memory is involved the more likely these are to
occur.

The Linux VM uses lists of pages in order to determine
which 4k pages contain information that is no longer
worth to be kept in memory. The lists establish the least
used memory in the system and then the Linux VM can
reclaim that least used memory for other uses. For each
page it has to be determined if it was used since the
last scan by checking a referenced bit. The VM must
therefore visit all pages regularly in order to correctly
expire pages from memory. The more memory there is
the larger these lists become. The more allocations are
performed the more aggressive the VM has to scan and
then trim pages via these lists.

As long as there is no lock contention and reclaim passes
only take a small amount of time everything will be
okay. The system is not under much memory pressure
and has a reasonable chance to find freeable memory
with short scans.

If memory allocations continue to occur and multiple
processes start to expire memory then extensive scan-
ning may result. Since we keep on adding more pro-
cessors (due to the increasing use of multi-core technol-
ogy) lock contention may also result because multiple
processors attempt to reclaim memory simultaneously
from the same memory range. Each has to wait for the
lock in order to be allowed to scan the list. The lists
are protected by spin locks and so other processors are
waiting by spinning on the lock. The more processors
the more likely live lock scenarios can develop due to
starvation or simple slowdown because processors have
to wait for locks that are held for a long time.

On NUMA it is typical that things take a turn for the
worse when direct reclaim is beginning to occur concur-
rently. At that point the VM is walking down potentially
long zone lists. Most of those are remote and memory
accesses are especially expensive. If concurrent reclaim
occurs within the same zone from multiple remote pro-
cessors then excessive latencies will slow reclaim down

further. At the end a majority of the processors may
be in reclaim and only minimal processor time may be-
come available for user processes to make progress with
data processing.

2.2 Randomized memory references

The larger the memory the higher the chances of TLB
misses which also may slow the machine. TLBs can
map 4 kilobytes or 2 megabyte sections of memory. The
number of TLBs that a processor can cache is limited.
If the processor can handle 512 4k TLB entries (like
in the upcoming Nehalem processor) then the proces-
sor can access only 2M of memory without a TLB miss.
The number of supported TLBs for 2 megabyte entries
is only 64 which allows the access to 128 megabyte of
memory. TLB misses can be fast if the page table entries
are held in the processor cache but a cache miss of the
page table entry can introduce significant latencies. And
the larger the amount of memory the more the chance of
these misses.

With increased memory the accesses to data location
in memory will be more sparse if data is not allocated
closely together. It is therefore becoming expensive to
follow pointers to memory that has not recently been
accessed. TLB misses become more and more likely
to occur. There is the increasing chance of CPU cache
misses. and the memory architectures that are optimized
for neighboring memory accesses and therefore cannot
handle sparse memory accesses effectively.

There are therefore multiple reasons why it is advan-
tageous to use memory that is near other memory that
was recently accessed. However, the arrays of pointers
to page structs that we currently use for various pur-
poses in the VM have a problem here because they have
no locality.’ Pointers may go to arbitrary pages all over
memory. For all practical purposes these pointer lists
may degenerate to accesses that are seemingly random
defeating the highly developed logic put in the proces-
sor to prefetch memory. In the worst case these lists may
cause a TLB miss for each page struct on the list.

SThe situation for page structs is still better than references to
objects in the pages because page structs are placed in a special
memmap area whereas other objects can be placed anywhere in
memory.

2.3 1/0 fragmentation

The result of degeneration of page lists to access to ran-
dom locations in memory has another important conse-
quence for I/O. The page that are sent down to the I/O
subsystem cannot be coalesced into larger linear chunks
(which is typically possible for some time after boot be-
cause pages that follow each other are allocated in or-
der). And therefore the I/O devices have to do I/O via
scatter/gather entries to bazillion of pages in seemingly
random locations in memory. I/O devices suitable for
Linux must support an ever increasing number of scat-
ter gather entries. The scatter gather list complexity be-
comes a potential I/O performance bottleneck.

3 Solutions for handling large amounts of
memory

The main problem here is that the VM has to sift through
too much meta data for key operations like memory allo-
cation, reclaim and I/O. Plus the meta data is seemingly
randomly distributed over all of memory reducing opti-
mizations that the memory subsystem could make. The
following solutions are focusing on reducing the scan-
ning effort, reducing the amount of memory references
for key VM operations and increasing the locality of ac-
cess in order for CPU caches, TLBs and memory sub-
systems to be able to optimize memory accesses.

3.1 Reclaim improvements

One approach is to look at the problems that are emerg-
ing with memory reclaim in the VM. Rik van Riel has
over the last years investigated a variety of methods to
improve memory reclaim. These methods result in a
better determination of which pages to evict from mem-
ory utilizing new reclaim algorithms developed in Uni-
versity settings. Among them: ARC, ClockPro, CAR
and LIRS). 6. These improvements would also faster
expiration of pages by reducing scan time and allow a
more accurate prediction of pages that may be needed
in the future.

The other aspect of Rik’s and other developers work on
reclaim is that methods are developed to exclude pages
that are unreclaimable from the reclaim lists and lists are

6See http://linux-mm.org for more information about these ap-
proaches

created of pages that contain easily reclaimable pages.
These methods reduce the scanning overhead and may
reduce the problems that we currently see. They are par-
ticularly good for specialized loads that result in large
numbers of unreclaimable pages. The current reclaim
in the Linux VM has to scan unreclaimable pages again
and again which is obviously good to avoid.

These are interesting approaches that enhance page re-
claim and allow us to manage even more page structs
in a better way. However, they do not address the fun-
damental issue that there is too much meta data for the
VM to handle. The advanced reclaim methods still re-
quire eventually scanning through all the pages. The
number of pages is not reduced. the number of pages
keeps on growing while me make minimal progress in
getting these advanced reclaim algorithms working in
the Linux VM.

3.2 Increasing the default page size

The solution that we have adopted for Itanium is to
change the default page size. On Itanium this is sup-
ported by the hardware. So its easy to do and the in-
crease in page size has a significant effect in reducing
the VM overhead for those large machines.

The x86 platform only supports 4k and 2M (64bit) page
table entries. We could work with that and increase the
default page size by installing multiple 4k page table
entries in order to simulate f.e. a 16k or 64k “page” like
done on TA64.

But it is not clear that one actually would want a larger
default page size. The 4k page size is appropriate for
the executables and small files that are needed by the
operating system. The main use of larger sized pages
are for applications that either perform a large amount
of I/O (databases, enterprise applications) or need large
amounts of memory (HPC applications).

The binary format is also affected. Current binaries are
formatted to have data aligned on 4k boundaries. If
that is no longer the case then we either have to change
the binary format or provide some sort of layer that al-
lows 4k aligned access although the default page size
is larger. The easy solution out of that may be to sim-
ply redefine the binary format and rebuild a completely
new distribution. But that would require some work on
binutils, the linker and the loader.

Another idea that avoids multiple 4k PTEs per large
page is to set the default page size to the next higher
page size which is 2 megabytes on x86. Essentially we
are using a PMD for a PTE. Such a specialized version
of Linux could perhaps run as a guest inside a virtual-
ized environment (KVM, Lguest) in order to allow the
special HPC or Enterprise class applications to run. The
applications would have to be compiled for an environ-
ment that has a 2 megabyte base page size and we would
need a minimal distribution to create essential binaries
that are necessary for the application.

3.3 Optional Support for larger page sizes

Optional support for larger page sizes means that the
binary format can be left intact. User space works as
it always has. Without enabling additional options the
behavior of the kernel does not change. Optional large
page size support means that all existing kernel APIs
to user space stay as they are. Large page support can
be switched on for special purposes by—for example—
formatting a disk with a larger block size than 4kb. Or
one could create a pseudo file system in memory with
a larger page size that is then mapped into a processes
memory.

However, larger pages means that the VM must now
support more frequent allocations of contiguous mem-
ory larger than a 4k. Requests for contiguous memory
may vary in size. Memory fragmentation in Linux may
increase.

Linux already has fragmentation avoidance logic im-
plemented by Mel Gorman and one active defragmen-
tation method (lumpy reclaim). Both are measures to
keep contiguous memory available. Both increase the
chance of being able to obtain contiguous memory be-
yond the size of a single page but neither can guaran-
tee that a large contiguous memory chunk is available
at any point in time. Any user of contiguous memory
beyond 4k must implement fallback measures that kick
in if large contiguous memory is not available. In fall-
back we loose the localization of memory accesses and
increase the cache footprint. Fallback usually is realized
by managing lists of small 4k pages.

These fallbacks are currently rare but with the increase
of demand for larger allocations the fallbacks may be-
come more frequent. Additional defragmentation mea-
sures could be needed to produce more contiguous
memory to avoid fallbacks to lists of pages.

4 Virtualizable Compound Pages

Virtualizable Compound Pages are a first step to sup-
port allocations of varying sizes of larger pages in the
kernel. An allocation request for a Virtualizable Com-
pound Page will first attempt to allocate linear physical
memory of the requested size (a real Compound Page).
Typically these allocations will be successful resulting
in a large page useful to allow the localization of multi-
ple objects, the use of large stacks or temporary storage
for various purposes.

If the page allocator does not have sufficient linear mem-
ory available then the fallback logic will allocate a series
of 4k pages and use the vmalloc functionality to allow
the memory provided to be used as virtually contiguous
memory. This increases the overhead because the pro-
cessor needs to use a page table to look up the memory
location of each 4k chunk but the page table handling
logic is usually integrated in the processor and therefore
fast and entries are cached. However, memory may be
physically dispersed which means the optimizations for
linear access of the memory subsystem and I/O subsys-
tems may not be triggered. An array of pointers to the
pages has to be maintained as well.

Virtualizable Compound Pages have the disadvantage
that the user of these pages must always be aware that
the linear memory that was provided by the allocator
may be virtual and that actual physical memory may not
be contiguous. If for example, a device needs to operate
on the memory of a Virtualized Compound Page then
the device needs to perform scatter gather operations to
the physical pages that constitute the Virtualized Com-
pound Page.

Additional problems result if the processor needs to
have TLB entries loaded via a processor trap (like on
[IA64). In that case access to the virtualized memory
requires the ability to handle the faults in the contexts
that the virtualized compound is used. In the case of
[A64 the use of Virtualizable Compounds for stacks is
impossible because the trap mechanism itself depends
on the availability of the stack. If the processor imple-
ments TLB lookups in hardware (like x86) then the use
of Virtualizable Compounds for stack areas is possible.

Virtualizable Compound Pages allow to optimize two
typical usage scenarios in the kernel:

4.1 Avoid vmalloc

The use of Virtualizable Compound Pages allows the re-
duction of the use of vmalloc’ed memory. If a Virtual-
izable Compound is used instead of vmalloc then the
page allocator will typically be able to provide a con-
tiguous physical memory area. No vmalloc is necessary
unless memory is significantly fragmented and the an-
tifragmentation measures have not produced enough lin-
ear memory. Therefore overall vmalloc use of the kernel
is reduced. The need to go through a page table can be
avoided and access to memory becomes more effective.

4.2 Fallback for higher order allocations

The other use of Virtual Compounds is to avoid higher
order allocations that may fail. If higher order allocation
requests are converted to Virtual Compounds then the
kernel code can transparently handle situations in which
memory is fragmented and no higher order pages are
available. A typical use case are large buffers and stacks
(would f.e. allow the use of significantly larger stack
areas than currently possible).

5 Variable order slab caches

It is easy to make slab allocations use various sizes of
pages if the maximum number of objects is stored with
each page. A variable order slab cache therefore does
not need virtual mappings like provided through Virtu-
alizable Compound Pages. Slab allocations can then be
tuned to use more or less large pages depending on their
availability. Allocation sizes can be cut back to lower
sizes if memory fragmentation demands this. Alloca-
tions of large units that fail can be retried with a smaller
allocation unit. This means that in extreme cases the
effectiveness of the antifragmentation and defragmenta-
tion methods determines the extend to which large allo-
cation units can be used. Therefore the speed and the
locality of slab object allocations may depend on effec-
tive defragmentation.

The size of the allocation units also increases the like-
lihood that slab objects are allocated near one another.
The resulting object locality reduces the TLB pressure
commonly coming from pointer chasing because objects
are distributed over all of memory. An optimal config-
uration can be obtained if the allocation unit is made to
fit the TLB size used for the kernel data segment. On

x86_64 this is 2 megabytes. So if the allocation unit is
set to 2 megabytes then most objects taken out from a
given slab on one processor will come from the same
2 megabyte area that can be covered with a single TLB
entry.

A larger allocation unit is particularly useful for slab
caches with larger object sizes (1 - 3 kilobyte objects)
because a larger allocation allows more effective place-
ment with less waste of memory. Objects may not be
fitting well into smaller sized allocations. In addition
to more efficient placement allocation requests are also
able to use the fast path for a higher percentage of allo-
cations. As a result calls to the page allocator become
less frequent.

The allocation using varying page sizes puts more stress
on the antifragmentation and defragmentation methods
of the page allocator. If a high number of allocations
fails and requires a retry with a smaller allocation size
then this method is not effective and it would be better
to switch back to smaller allocation units.

6 Larger 1I/0 buffers

One of the limitations under which Linux file systems
suffer is that I/O must be managed in 4k chunks because
the maximum buffer size is constrained by the page size
of the operating system. This size is 4kb on x86. As a
result file systems are basically on their own if they want
to manage data in larger chunks of memory. Some file
systems implement a layer that allows the management
of larger buffers (like done in XFS) using virtualized
mapping which means managing a list of pages for each
larger buffer. The additional overhead reduces the po-
tential performance gain and results in potentially non
localized memory accesses.

The small I/O buffers also limit the amount of contigu-
ous I/O that can be reliably submitted via DMA trans-
fers to devices. Small 4kb chunks of memory require
the management of large scatter gather lists which may
be a limiting factor in the I/O throughput of a device.

Some file systems (like the ext file systems) are limited
in the size of the volumes they currently support be-
cause they track allocations in page size chunks. If the
chunk size can be increased through the use of larger I/O
buffers then the size of volumes can be increased. The
meta data that has to be managed for a given volume

size is reduced significantly which accelerates the oper-
ation of the file system. The scaling possible with larger
buffers can breathe new life into old file systems that can
now overcome their size and performance limitations.

Large page support requires modification to the way that
page size is handled in functions that provide page cache
operations. The page size is stored in the mapping struc-
ture that exists for each opened file in the system. The
mapping structure must then be consulted during each
page cache operation to determine the block size to use
for a particular operation. The page size or buffer size
can then be configured dynamically for each open file.

However, the use of large pages should not change the
user APIL. In particular mmap semantics that are ex-
posed to user space should not change. It needs to be
possible to continue the mapping in 4kb chunks. This
becomes possible if we allow mapping of 4k segments
of larger pages into an address space. The semantics of
mmap are then preserved. One has to realize though
that state for multiple of these 4k chunks is kept in a
single page struct. Only the large page as a whole can
be dirtied or locked. Write and read operations must be
performed using the block size set in the mapping.

Typically large pages up to 64k can be supported by
Linux file systems since the file systems already support
platforms (IA64, Powerpc) that allow a 64k base page
size. The file system meta data structures are therefore
already prepared to support block sizes up to 64k. Sup-
port for larger sizes will require modifications to the file
systems. The ability to set the page size per mapping
may allow the design of entirely new file systems with
support for a block size that can be configured per direc-
tory or per file.

The changes necessary for large page support are typ-
ically transparent for file systems. The set_blocksize()
function will allow the setting of larger sizes than 4k
page size which will affect the raw block device.

Fallback occurs using Virtualizable Compound Pages.
File systems can access the buffer data via linear access
through the page tables in the fallback case. However
devices may have to check if a virtually contiguous page
is passed to the driver and then set up DMA with a scat-
ter / gather list of the physical pages that constitute the
Virtualized Compound Page.

7 Memory Fragmentation

Memory fragmentation has been an issue for a long
time for the Linux kernel. Over time the 4k pages
used for processes tend to get randomly distributed over
memory which also has the effect of making alloca-
tions of large contiguous chunks of memory impossi-
ble. There is no problem as long as only 4k page alloca-
tions are performed because memory of the same size is
freed and allocated. However, larger allocations than 4k
have always been performed for the stacks on x86 (8k,
so two contiguous pages are required) and for certain
slab caches where objects would have caused too much
memory wastage if they would have been placed in a 4k
page. The risk of failing such an allocation was judged
to be negligible. If such an 8k allocation cannot be sat-
isfied then the page allocator will continue reclaiming
until two consecutive pages are available.

The larger the chunk of memory becomes, the larger the
risk becomes that an allocation cannot be satisfied. The
page allocator will typically attempt to continue page
reclaim in order to generate contiguous pages for allo-
cations up to order 3 (32k). Even larger allocations will
fail after a single reclaim pass that failed to generate a
sufficiently sized page.

7.1 Antifragmentation Measures

Antifragmentation measures avoid fragmentation by
classifying the allocation according to object lifetimes
and reclaimability. One result of antifragmentation mea-
sures is that reclaimable pages are allocated in special
memory areas. A series of neighboring pages can then
be reclaimed to obtain large contiguous regions. So
there is some level of guarantee that reclaim will be able
to open up contiguous areas of memory because there
are no unreclaimable pages in the way.

Antifragmentation measures were added to support al-
location of huge pages even after the system has been
running for awhile and after system memory has be-
come fragmented. Huge pages are becoming more im-
portant for applications since they allow the localization
of memory accesses and the reduction of TLB pressure
by the use of a single TLB entry for 2 megabytes of
memory. Huge pages are a crude way to reach optimal
speed of a machine as long as we have no large page
support in the VM.

Problems still exist with allocations that are marked
unmovable. These allocations are mostly page tables
and certain slab allocations. The situation could be im-
proved by making page table pages movable.” The slab
defrag functionality allows making slab objects movable
but a support function must be provided for each slab
cache to provide such functionality for each slab. A sig-
nificant reduction of the number of unmovable alloca-
tions would be possible with these two measures.

Somewhat fewer problems exist with allocations
marked reclaimable. Reclaimable allocations are
mainly used for slab allocations that can be reclaimed
using shrinkers. The slab defrag measures add methods
to these slabs that allow the targeted reclaim of objects
in these caches. So these are already movable to some
extend and the movability of these objects will increase
as the reclaim methods for reclaimable slabs mature.

Antifragmentation measures cannot guarantee the avail-
ability of larger allocations. Antifragmentation mea-
sures only increase the likelihood of large allocation to
be successful. In the worst case the situation can degen-
erate into a state in which the categorization of alloca-
tions fails. Antifragmentation will never move pages but
only sort the allocations according to its reclaimability
which means that antifragmentation can be supported
with minimal overhead.

7.2 Defragmentation

Defragmentation measures move pages or target specific
pages that are in the way of generating a large contigu-
ous section of memory. Defragmentation therefore in-
volves more overhead than antifragmentation measures.

The one defragmentation method currently imple-
mented in the kernel is lumpy reclaim. Lumpy reclaim
works with movable pages. During reclaim we check
if the neighboring pages could be freed. The freeing
of adjacent pages then allows the merging of free pages
to large contiguous chunks that could be used for large
page allocations for the page cache etc. However, lumpy
reclaim does not apply to unmovable allocations and
reclaimable allocations. Some additional work could
make lumpy reclaim like methods work for reclaimable
allocations.

7See Ross Biro’s work on relocatable page table pages.

Mel Gorman has a patch set that implements full fledged
defragmentation. Defragmentation has much in com-
mon with memory hot plug. In both cases an area of
memory is scanned and memory is then moved else-
where. We could have a defragmentation solution in the
kernel if we wanted to or needed to have such support.

8 The need for a better page allocator

The development of new functionality in the page allo-
cator has been slow since the merge of the antifragmen-
tation measures which was a controversial decision that
took years to make. There are a number of known prob-
lems:

8.1 Slow 4k page allocations

The current buffering mechanism for 4k pages (which
one would expect to be of superior speed given the im-
portance of 4k allocations to the VM) is suffering from
bloat and is inferior to the allocation speed of the slab
allocators by some orders of magnitude. The result is
that 4k allocations frequently use the slab allocators in-
stead of the page allocator. Various subsystems com-
pensate by having their own buffering schemes to avoid
the page allocator. All of that code could be avoided if
the page allocator fast path could be made competitive
in performance to what the slab allocators can do.

Ironically 4k page allocations are often about 5% slower
(uncontended case) than 8k sized allocations. 8k alloca-
tions bypass the 4k buffering mechanism and therefore
can avoid the list management overhead. Performance
wise it seems to be best for a subsystem to allocate a
large chunk of memory from the page allocator and then
cut it into 4k pieces on its own.

8.2 Issues with lock contention from multiple pro-
cessors

Higher order allocations have a disadvantage: Access to
the buddy free lists requires taking a zone lock which is
for most systems a global lock. So multiple processors
cannot simultaneously allocate memory from the page
allocator. For 4k sizes we have a buffering mechanism
that avoids the locking (but creates overhead that hurts
elsewhere).

If multiple processors allocate memory continuously
from the page allocator then we may end up with bounc-
ing cache lines for the zone locks. This contention can
even be observed with 4k allocations if they are frequent
because even the 4k buffering scheme needs to go to the
free lists once in a while to check out a new batch of

pages.
8.3 More effective support for order N allocations

If the page allocator is presented with varying orders
of allocations then it would be best if these would be
satisfied from several different areas. If allocations of
the same order came from the same memory area then
fragmentation would be reduced. Such a scheme is an
extension of the antifragmentation method of sorting the
allocations according to their lifetime. We would also
sort them by size.

8.4 Scaling memory reclaim

One important aspect of larger page support is that it
addresses the reclaim issue. If the pages on the reclaim
lists have a larger size then there are fewer of these pages
for a given amount of memory. The number of page
structs that have to be processed is reduced and therefore
reclaim works in a more effective way.

Reclaim is currently problematic on a multitude of plat-
forms. Even desktop loads can start to suffer from re-
claim scaling if applications are pushed into heavy re-
claim. Swapping of large applications can make the sys-
tem feel sluggish for good. One wonders if it would not
be better to simply fail if there is not enough memory
rather than have the system become so sluggish that it
takes a long time even if one attempts to simply reboot
the system to get rid of the memory reclaim problems.?
In the HPC area it is already fairly common to abort an
application if heavy reclaim occurs because the applica-
tions becomes unacceptably slow.

9 Transparent Huge and Giant page support

Support for varying sizes of pages for the page cache
would allow transparent support for huge pages with
minimal effort. Most of the page cache functions could
be used directly by the huge page subsystem. The VM

8The problem is in no way unique to Linux

could be optimized to install PMDs instead of PTEs if
the PTEs would fill the complete page table page at the
lowest layer.

Ultimately it would be possible to get rid of the cur-
rent huge page support. A small skeleton could be re-
tained for backward compatibility. Having transparent
huge page support would clean up special casing in the
VM and make it easy for applications to use huge pages
for various purposes without the use of special libraries.

Giant pages are 1G sized mappings that are currently
only supported by the most recent AMD processors.
Transparent huge page support could be extended to
also support the 1G PUDs that these processors pro-
vide without the need to add yet another subsystem with
special reservations. 1G support would be a way to ef-
fectively manage memory for applications that may use
several terabytes of memory.

10 Conclusion

Memory sizes are going to continue to increase while
processor speeds will continue to not make much head-
way. Further parallelization will occur by processor
manufacturers increasing symmetric (multi core) and
asymmetric (coprocessors) parallelism on the die.

Concurrency issues will therefore continue to dominate
the development of operating systems. It is likely that
we will see a ratio of over 4 GB of memory per core.
A single processor may have to handle about 1 million
pages for reclaim or for I/O if we stay with the current
scheme of handling memory in the VM. We will have to
deal with this situation in some way. Either we need to
develop ways to handle bazillions of pages or we need
to reduce their number. However, optimal performance
will only be reached through an effective reduction of
the number of entities that the kernel has to handle.

The trend to processor specialization will continue since
binding a task to a processor will allow effective use
of the CPU caches and speed the operation of actions
necessary repeatedly. This means that limiting I/O sub-
mission for a given cached dataset to a few processors
makes sense. Also it may be useful to dedicate certain
processors to the operating system for reclaim, defrag-
mentation and similar memory intensive operations that
would contaminate the caches of other processors exe-
cuting mostly in user context.

10

11 References

Brim, Michael J. and James D. Speirs, The
Processor-Memory Gap: Current and Future Memory
Architectures. 2002. http://pages.cs.wisc.edu/
~mjbrim/personal/classes/752/report.ps.

Mahapatra, Nihar R. and Balakrishna Venkatrao, “The
Processor-Memory Bottleneck: Problems and Solutions.”
Crossroads, Volume 6, Issue 3es. ACM: New York, 1999.

Marathe, Jaydeep P. METRICS: Tracking Memory
Bottlenecks via Binary Rewriting. Master Thesis: North
Carolina University, 2003. http:
//www.lib.ncsu.edu/theses/available/
etd-07132003-161530/unrestricted/etd.pdf.

“Optoelectronic Integration Overcoming Processor
Bottlenecks” in Science Daily, August 4th, 2005.
http://www.sciencedaily.com/releases/
2005/08/050804053723.htm.

Sutter, Herb, “The Free Lunch is Over: A Fundamental Turn

toward Concurrency in Software.” Dr. Dobb’s Journal,
(30)3, March 2005.

Bokar, Shekhar, Pradeep Dubey, Kevin Kahn, David Kuck,
Hans Mulder, Steve Pawlowski and Justin Rattner ”Platform
2015: Intel Processor and Platform Evolution for the Next
Decade.” Technology Intel Magazine, Intel Corporation:
March 2005.

