
When NAPI Comes To Town
Jamal Hadi Salim <hadi@znyx.com>

1.0 Introduction
Over the years, a lot of effort has gone into improving network processing equipment
that use general purpose CPUs. Such equipment, in the form of servers or middle
boxes such as firewalls, routers, intrusion detection and prevention boxes, is built
using off the shelf hardware, such as PCs.

General purpose CPUs have lived up to Moore's law expectation and their
computation capacities have gone up1. This document was typed in on a 2Ghz
Pentium-M laptop with 2MB of L2 cache, running Linux 2.6.12 kernel on Ubuntu
distribution. It is not uncommon at all to buy a 3Ghz Intel processor like candy at a
Ma-and-pa computer shop in Ottawa. To sum it: The CPU vendors have lived up to
their end of the bargain to make processors faster.

High Speed Network processing, however, is still a challenge, despite the availability
of such high capacity processors.

Most pundits explain this challenge to be due to the fact that Network pipe capacities
have gone up. After all, there are now more 1Gps Network Interface Cards (NICs)
being sold in the market than are 10/100Mbps Fast Ethernet NICs; and 10Gbps NICs,
while still not available at Uncle Lou's computer shop, are becoming more common.

Often times you read or hear of the Network bandwidth to CPU capacity rule-of-
thumb: To process 1bps bandwidth you need 1 hertz of CPU compute capacity2. In
other words you need a 1GHz processor to process 1Gbps. This is a very naïve,
wrong, and misleading cliché often propagated by any vendor with an offload engine
(typically all those TOE vendors; ask Google for enlightenment).

In this paper, we are hoping to undo some of the misinformation by breaking down
the causes which hinder high speed network processing using COTS(Commodity Off
the Shelf) hardware in Section 2.0. We focus on one of the issues which is a hindrance
to high speed processing, namely that of IO in relation to current Linux kernels3.

In Section 3.0, we reintroduce NAPI to provide context for our discussion.

In Section 4.0, we introduce the current issue at hand being exposed by NAPI. We
propose a solution and proceed implement, experiment, and analyze.

In Section 5.0, we discuss alternatives to our work; and in Section 6, we conclude the
discussion.

1 The author claims to have lived through Moore's revolution first hand. He recalls a professor
invoking quantum mechanics and predicting that it would take many years before vendors started
producing 100Mhz RISC processors and that 100Mhz would be an upper bound for CPUs. A year
later, the author was a proud owner of a 486DX 100Mhz PC.

2 Unfortunately, these statements are not just being propagated by Kool Aid marketing departments
but also by some serious people, at times in serious academic papers.

3 We duly note that this issue is now more exposed because NAPI makes more CPU available to the
system.

2.0 Factors Affecting Packet Processing
There are several factors that have been shown in studies over the years to be a
restrictive factor in network IO performance.

● CPU speeds

As mentioned earlier, CPU capacities continue to scale well. The challenge to date is
not in the available CPU cycles but in their utilization.

Increasing the CPU capacity does not solve the utilization problem but will make
relatively more resources (cycles) available and therefore is more of a brute force
performance enhancement.

We do not discuss CPU speeds as an issue in this paper; rather, we are focused on
maximizing utilization of the CPU.

● Interrupts

As network pipes got fatter, the amount of packets per second hitting a CPU went up.
In the classical sense, every incoming packet causes an interrupt. This causes a
phenomena known as interrupt livelock [JMKK], in which the system's CPU is
incapable of keeping up with the interrupts caused by packet arrival–so much so that it
ends up trashing. The utilization of the CPU is reduced to almost zero when the
livelock kicks in.

This has been the major hindrance to network performance since the inception of
Linux up to about kernel 2.4.20, when NAPI [NAPI], described in Section 3.0, was
introduced. NAPI was first introduced around 2000 in the unstable 2.5.x series.

It should be noted that 10 Gbps ethernet is 4 orders of magnitude than 10Mbps and yet
most people continue to use 1500 byte MTUs to date. The effect is that interrupt rate
has gone up with increase in network bandwidth instead of staying constant4.

● Bus Bandwidth

When the processor is sufficiently fast and can process more packets over a unit time
than there can be offered across the bus, then bus bandwidth becomes a noticeable
issue. Such a case is observed in [jhssucon].

With newer motherboards(circa 2005), it is common to have 64bit, 66Mhz PCI-X or
better, as well as NICs spread over multiple buses. In such a setup, bus bandwidth is
hardly a constraint given that poor CPU utilization overshadows it. So we are not
going to discuss this issue much further in this paper.

● RAM latency

While CPU speeds have been going, up memory latency has not. On average, RAM
access times are anywhere between 20-200 times higher (in CPU cycles) than L1
cache access and anywhere between 5-20 times more than L2 cache access on CPU.
Things get worse as CPU speeds go up. Cache misses, therefore, continue to be
expensive.

Most modern processors either do aggressive prefetching or provide opportunities for
the programmer to prefetch when anticipating a cache miss.

AMD Opteron architecture improves on RAM latency by getting the CPU close to
DRAM by integrating the memory controller on the chip, unlike Intel-based ones,
whose path goes via the MCH in the chipset.

4 private discussion with Greg Banks.

Processor architectures are also being built to take advantage of RAM latencies. The
standard technique is to introduce multiple hardware threads that get scheduled
whenever a hardware thread stalls waiting for memory read/write completion. IBM's
Power 5, Sun's Niagara, and the newer MIPS SMT processors are examples.

● IO latency

[Nahum] measured the access time of memory mapped IO registers of an Intel e1000
NIC on Linux kernel 2.6.9. We pick three machines from that study since they provide
good sample data5.

1. A 500Mhz, Pentium 3 with a 32 bit, 33Mhz PCI bus. This machine could be
considered to have been high end in the year 2000 time frame.

2. A 1.7Ghz, Pentium 4 with a 64 bit, 66Mhz PCI bus. This machine could be
considered high end around 2003.

3. A 3.2Ghz, P4-Xeon with a 64 bit, 133Mhz PCI bus. This machine could be
considered state of the art around 2004.

Some very interesting observations can be inferred from the paper's data:

● IO access times are several factors higher than memory latencies. For
example, an IO write for the P3 it is about 2x higher than memory access
time.

● IO reads are generally about twice more expensive than IO writes.

● IO reads and writes get more expensive as CPU speeds go up. As an
example:

● The P3 has an IO read latency that is about 100x higher than its L1
latency.

● The P4 has an IO read latency about 800x higher than its L1 latency.

● The Xeon has an IO read latency 1000x higher than its L1 latency.

What is more intriguing is that despite the fact that clock cycle times have decreased
as processors have become faster, the absolute times have in fact increased in general–
at least in the case of IO reads. As an example, the absolute time for an IO read for the
P3 is 600 ns, whereas its 800 ns for the P4.

It should be noted that the processor stalls while accessing IO for read. The higher the
IO rate and access cost, the lower the efficiency of meaningful work in the CPU
cycles.

[iod00d] attributes IO read expense to bus speed, the number of bridges the IO has to
cross to get to its target and how quickly the target device responds. [iod00d] also
mentions that depending on how busy the path to the target is, it may get even more
expensive; as an example, even a IO write will stall if the IO bridge nearest to the
CPU has a full write queue. In other words, the data we have presented thus far is for
best case scenario. This paper is not about how to choose good hardware for packet
processing, so we are going to assume that we have no control over that so we can get
towards a generic solution instead of specific ones6.

5 It should be noted that the chipset used, and in particular the bus slot capacity used, will have effect
on the latencies. Robert has shown this in his paper on pktgen. For the purpose of this paper, these
selected machines are considered state of art for their time frame and provide a good sample.

6 For example we are not recommending what chipset or motherboard to use and neither are we
going to recommend killing chipset divisions of certain big companies ;->. We are assuming
whatever the OS does it cant make such assumptions and our goal is to make the OS resilient.

[mmio_test] have collectively written a program that can be used to measure MMIO
access times across NICs. Some sample measurements back the results found by
[Nahum]. These are shown in the table below.

proce-
ssor

2.6G
celeron

32/33

e1000

1.2G

P3

64/66

e100

2.8G-
HT

P4

PCI-E

1G

Nehemiah

32/33

e100

450M-
P3-

2/SMP

32/33

e1000

2.6G Xeon

(live*)

e100*

3.0G

P4/HT

CSA?

e1000

Read
cycles 3200 720 2300 620 320 2400 1750

Table1: CPU cycles

3.0 NAPI

NAPI was added to Linux 2.4.20 to improve performance under heavy network IO.
Prior to NAPI, Linux would go into receive livelock, where the system is rendered
unusable for the period where the heavy network activity is seen [NAPI].

NAPI is hybrid interrupt/poll scheme adopted from early research at DEC [JMKK],
with enhancements to accommodate SMP based systems in which the network stack is
multi threaded (which the DEC people did not face).

The reader is assumed to be somehow familiar with NAPI; however, to understand the
issues we are attempting to address in this paper, we present the NAPI state machine
in Figure 1, below7. We do not go into a lot of nitty gritty details (refer to existing
NAPI drivers and HOWTO in the kernel sources for low level details); however, we
provide sufficient details for the reader understand the high level.

Throughout this document we use the term device and interface interchangeably to
mean the involved NIC and its associated driver.

When the system boots up, the network device is by default in the closed state. As
soon as the device is administratively brought up (by using a utility like ifconfig), it
moves into the poll_off state. In this state, the network device has its interrupts
enabled. An arriving packet causes the receive interrupt status to be enabled and the
interrupt handler is invoked.

The interrupt handler reads the status registers to find out what caused interrupts (this
is an IO read). It then disables the interrupts (an IO write), schedules for the device to
be polled, and moves the device into poll_on state. During this state, incoming
packets are deposited onto the DMA receive ring upon arrival.

In the poll_on state, Linux is aware that the device has packets that (typically) are
sitting at the DMA ring, waiting to be processed. If the CPU is busy elsewhere during
the poll_on state, arriving packets continue to get deposited at the DMA ring without
bothering the CPU from what it is doing. When the ring fills up, any new incoming
packets are dropped.

When the system is ready, it schedules the driver to enter the poll_receive state. In this
state, the driver is told the maximum number of packets–known as the budget–it can
push up to the stack. The design of NAPI is to treat all network devices fairly and to

7 First time the state machine has been published as far as we know.

this end the Deficit Round Robin [varghese] algorithm (DRR) is used to give equal
opportunity to push packets up the stack.

Fig1: NAPI State Machine

In poll_receive state, the driver removes a packet from the ring pushes it up the stack
where it is processed to completion. As an example, if the packet is to be forwarded,
it will go all the way to be deposited either on the DMA ring of the egress device or
the schedule queue for the egress device. The driver will push up to a maximum
number of packets that is asked of it as long as it does not exceed its allocated budget.
If at the end of its run the network interface has no more packets on its ring, it is
moved to the poll_off state and interrupts are re-enabled (an IO write). If, on the other
hand, it still had packets left, it is moved back to the poll_on state and as a result
rescheduled for a future poll. It should be noted that when the system processes
packets, more space becomes available for new packets. This is a very desirable
feature because it allows the CPU to process packets proportional to its processing
capacity and runtime load.

The network device oscillates between poll_receive and poll_on states if there is a
heavy network load. When the system perpetually oscillates between these two states,
it is because it has reached its maximum processing capacity. This capacity is referred

poll_on

 still no luck allocing
after timer expiry

poll_receive

opened

receive new
 packet

 schedule
 netdevice

has no work
 (done = 1)

 succeeded to alloc skb

Poll_off

closed

OOM

 not done
 (done = 0)

 failed to
alloc skb

Reset

 oom retries
exceeded

 reset
 success

to as the Maximum Loss Free Rate (MLFR).

In the poll_receive state, it is possible to go into the OOM state, if the driver is unable
to allocate a buffer to send up the stack. The driver starts a timer in the OOM state.
When the timer expires, the driver retries to allocate a buffer. Upon success, the driver
will reschedule itself and move to the poll_on state. After a maximum number of retry
failures, the driver bails out and enters the Reset state.

In the Reset state, the driver frees all its resources, such as buffers stuck in either
transmit or receive rings. (A similar state is entered when the transmit path is stuck
and the transmit watchdog timer fires.) On completion of a reset, the driver moves
itself onto the poll_off state.

It should be noted that most drivers do not implement the OOM and Reset state8 and,
in fact, go back to the poll_on state from poll_receive state upon failure to allocate
buffers. This is not wrong, but rather incomplete.

Let's recap the advantages of NAPI in dealing with packet processing scalability
within the state machine, so that we can explain the issues at stake:

● It is up to the core system to schedule the driver (transition from poll_on to
poll_receive) and tell it how many packets (budget) to push packets up the stack.
This provides fairness amongst many drivers attempting to send packets up the
stack and allows the system to scale based on runtime load as well as CPU
capacity.

● The number of interrupts under heavy network traffic is highly reduced. Interrupts
are only enabled during the transition from poll_receive to poll_off. Since the state
machine oscillates between poll_on and poll_receive states under heavy network
traffic, we see very few interrupts per unit time.

● Because of the decrease in interrupts and the fact a lot of common code is run in
the poll, the amount of cache misses is highly reduced when more than one packet
is processed in the poll_receive state.

● Because we have a lot fewer interrupts when more than one packet is processed, we
gain by having a lot less IO reads and writes and stall less than we did in pre-NAPI.

Overall, NAPI makes a lot of CPU available, thus improving CPU utilization. This
provides opportunities to discover new optimization challenges, such as the one
described in the next section.

4.0 New challenges: Low speed traffic, fast CPU and NAPI

As stated already, NAPI allows the system to scale its packet processing capacity
according to how fast the CPU is, how much load there is involved in processing the
packet, and how loaded the system is.

To illustrate, let's assume we have two hypothetical processors, A and B, and that B is
10x faster than A. Assume, again for illustration purposes, that processor A can
process only 1 packet every second (MLFR of 1), whereas processor B can process 10
packets per second (MLFR of 10). To simplify, ignore the type of processing–it could
be a server end system or a middle box forwarder. This means that if the packet
arrival rate was 10 packets per second for a burst of 10 packets then it would take
processor A 10 seconds to complete their processing and processor B 1 second. It
should be noted that under the condition that the processor is heavily loaded with

8 In fact, only the Tulip driver is known to implement these two states. Our goal in this paper is to
describe the full state machine and not argue about merits of drivers.

other work or that the packet path is expensive based on the type of packets coming
in, then both processors will exhibit a lower MLFR. But we are ignoring that fact for
this illustration and assuming that each of the two processors bring its full capacity to
bear when processing packets.

Given the above example and a timeline of 10 seconds, we have the following
situation:

t=0s t=1s t=2s t=3
s

t=4s t=5s t=6s t=7s t=8s t=9s t=10s t=11s

A poll_off

to

poll_on

poll_on
to
poll_rcv

poll_rcv poll_
rcv

poll_rcv poll_rcv poll_rcv poll_rcv poll_rcv poll_rcv poll_rcv

to

poll_off

poll_off

B poll_off

to

poll_on

poll_on
to
poll_rcv
to

poll_off

poll_rcv

to

poll_off

poll_
off

poll_off poll_off poll_off poll_off poll_off poll_off poll_off poll_off

Table 2: State transitions timeline

Notice that while both processors start processing packet at time = 1 second, processor
B is done within 1 second, whereas processor A takes 10 seconds to complete.

If, on the other hand, the packet arrival rate was 5 packets per second instead, then
processor A's time line will not change but processor B will transition in and out of
poll_off state twice instead of once within the 10 seconds.

If the packet arrival rate was 20 packets per second then during the 10 second (t=0 to
t=9s) time line shown above, B's state transition will look exactly the same as A's.

If you look at this scenario from an IO per second metric, then B will spend twice as
many IO operations per second in the case of the 5 packets/second input rate than it
would if the input rate was 10 packets/second. Note that while this is still a lot lower
IO rate than in the days of pre-NAPI, there is a desire to lower it to improve CPU
utilization.

To illustrate the worst case scenario, imagine a third hypothetical processor C with a
very high MLFR, and that such a processor is so fast that it can transition in and out of
poll_off for every packet, if the input rate is 10 packets per second.

If the IO cost is as expensive as described earlier, then it is possible that CPU C
spends relatively a lot more CPU time at lower rates than it does for much higher
incoming packet rate. This is because the IO rate is much lower at high data rate
input9.

This phenomena was first reported by Manfred Spraul on the netdev mailing list
around 2002. After a lot of discussions it was deemed that to resolve such an issue, we
would need to break the generality of NAPI and since his machine was a rare
exception at the time, it was deemed unnecessary to resolve the issue.

However, over the years more and more complaints kept coming in. Studies from
[Nahum] and [mmio_test] help us conclude that in current (2005) hardware, the
Manfred phenomenon should no longer be considered an isolated issue.

We look at several approaches to try and address this issue but first we detail one we
attempted.

9 Yes, it does sound like a contradiction.

4.1 Solution: Adapting the NAPI SM

It is clear that transition to and from the poll_off state is not a desirable thing if done
frequently.

An observation that could be made is that at sufficiently low rates, if we waited long
enough before transitioning from poll_receive to poll_off, there is a chance that when
we look again there will be packets to process. Essentially, we enforce a wait time in
order to amortize the cost of IO. As input rates go up, we expect to oscillate more and
more between poll_receive and poll_on states and eventually under sufficiently high
enough input rate approaching the MLFR we never leave those two states (and
therefore never have a wait period).

The question is how long to wait. The best fine grained timer we can get is based on
the system clock, Hz. On a P4 level machine, 1 clock tick (known as a jiffie) is 1 ms.
Most NICs have fine grained timers that we could use; however, using them will
defeat the purpose, since it will involve IO writes and reads which we are trying to
avoid.

We introduce a new state we call parked . In this state, the interface sleeps for a jiffie.

Fig2: Modified NAPI State Machine

Doing a little bit of arithmetic indicates that in theory, as traffic rates go up, and
before we reach the NAPI MLFR, we would succeed more in finding packets and
therefore transitioning towards the poll_on state from the parked state. This is what
we desire to achieve.

fo
un

d
pa

ck
et

s

poll_on

 still no luck allocing
 after timer expiry

poll_receive

opened

 schedule
 netdevice

has no work
 (done = 1,
workdone > 0)

 succeeded to alloc skb

Poll_off

closed

OOM

 not done
 (done = 0)

 failed to
alloc skb

Reset

 oom retries
exceeded

 reset
 success

Parked
for 1 jiffie

no
 pa

ck
ets

receive new packet

done=
1,

w
orkdone =

0

Figure 2 shows the new suggested state machine.

As in the previous state machine, when we enter the poll_receive state, we still
transition to poll_on state if we exceeded our allocated budget and there were still
some packets left in the receive ring.

In the previous state machine, we transitioned from poll_receive to poll_off state when
we found there were no more packets on the receive ring. We introduce new
heuristics and fork that transition into two paths. We still proceed to the poll_off state
if, during a run, we found no packets to send up the stack; however, if we did send any
packets up to the stack during a run, we guess (based on a heuristic that packets come
in trains) that there maybe more coming and we transition to the parked state, where
we sleep for a jiffie.

When the timer expires in the parked state, we check to see if there are packets to be
processed. If there are any, we transition the device to the poll_on state. If there are
none, we transition to the poll_off state.

4.1.1 Experiments and results

We ran two different test scenarios. The first test was to check if the parked state
works as theorized. The second test was to measure the latencies introduced. In both
tests, a Dell 610 laptop equipped with a Broadcomm 5671 Ethernet Gigabit NIC was
used. The tg3 driver was modified to add the parked state(patch available on request).

4.1.1.1 Test 1: Validating the parked state

The laptop was connected directly to an IXIA [IXIA] traffic generator. A tc rule to
drop all packets going to UDP port 9 was installed, because we wanted to test only the
state transitions and not the code path (in case it was long).

The traffic generator was made to send continuous burst of traffic at rates of {1, 10,
100, 1K, 10K, 100K, 1M} packets per second to the laptop's IP address and UDP port
9.

For each of those input rates we measured the relative percentage of the time we spent
on each state.

4.1.1.2 Test 1: Results and discussion

We validate that indeed the parked state transition works as expected and that at
sufficiently high traffic input, classical NAPI works as before.

Fig3: Relative State Transitions

At very low rates , anywhere between 1 and 100pps (way below the MLFR, as the
MLFR of the laptop for simply dropping is about 200 Kpps), we enter the parked state
100% of the time and 100% of the time when the timer expires we end up in the
poll_off state. In other words, entering the parked state was a waste. This is considered
a shortcoming in the scheme. One could argue that the extra timer is cheap and that
CPU cycles are more expendable at that input rate.

At 1Kpps, we find that on timer expiry, 1% of the time there is a packet waiting
causing a transition to the poll_on state. In other words, at this rate we start benefiting
from the timer. We are still wasting 99% of the timers that we started.

At 10Kpps, we are starting to see that NAPI is taking effect about 2% of the time
(poll_receive to poll_on transition starts showing up). We observe that the timer helps
us amortize the cost of IO 55% of the time. This is desirable and pleasantly surprising,
given that the MLFR is in the 200Kpps range.

At 100Kpps, we are still not in the MLFR region but are in the NAPI region 50% of
the time. We find the timers to be 100% useful.

At 1Mpps input, we are fully in the NAPI region.

To visualize these results a different way we can look at the packets processed per
interrupt as shown in the table below.

1pps 10pps 100pps 1Kpps 10Kpps 100Kpp
s

1Mpps
0

10

20

30

40

50

60

70

80

90

100

relative State transitions

rcv->on

rcv->park

park->on

Input
packets/sec 1 10 100

1K

10K

100K

1M

total packets
sent

10K 100K 100K 500K 1M 2M 20M

packets per
interrupt 1 1 1 10 141698 2236740 12985855

Table3: Packets processed per Interrupt

Observe that the packets processed per interrupt get higher as the input rates go up.
Between 1-10Kpps input, we start benefiting from the parked state and process more
packets per interrupt as a result. Unfortunately, we did not run the test without the
parked state to quantify the results; nevertheless, we can reach this same conclusion
from viewing the graph representation of the state transitions.

4.1.1.3 Test 2: Latency testing

To test latency, we did some very simple tests with the ping utility.

The Dell D610 was hooked up to an AMD Athlon 1Ghz machine. Pings were sent
from the Athlon to the Dell and various latency measurements were noted.

A standard ping generates about 1 packet every second while a ping -f from this
machine was found to generate about 2Kpps.

We tested the two setups first with the unmodified tg3 driver and then with a tg3
driver modified to include the parked state.

We made an observation that the latency minimum/average/maximum and deviation
did not differ very much between the two drivers for the standard ping utility, other
than forgivable experimental errors. This is expected given our earlier tests.

In the case of ping -f tests, we noticed that the jitter was always around 1ms for the
modified driver whereas it was about 0.2ms for the standard driver. It should be noted
that things get a lot worse with machines that have an even larger system timer
depending on the hardware used. On lower end CPUs, the timer is commonly around
10ms or even further higher. Infact there is talk to raise the current timer on the P4 to
2 ms10.

Clearly this is a shortcoming for the modified driver. Both latency sensitive
applications, as well as those dependent on throughput using small packets, will
suffer.

4.1.2 Analysis

We have validated that the theory described in Section 4.1 works as expected. The
parked state timers fire only when there is little to moderate traffic, but otherwise we
have classical NAPI taking effect when the traffic rates go up (and the parked state is
either rarely or never entered depending on the input traffic rate).

We have also found issues with the solution. At very low traffic, there are still wasted
cycles because expiring timers find no useful work to do. While that could be deemed
as a forgivable contradiction, the jitter introduced because of the 1 ms timer is not.
For applications such as NFS/UDP, or any other that depend on RTT estimators in a

10 Source: Private email discussion with David Miller.

one hop environment, this would kill, in particular, interactive performance. For
multi-hops, where the RTT would be higher, this will not be noticeable.

Of course the jitter problem is resolvable if we had a more fine grained timer. Most
NICs do have such timers but using these timers would defeat the purpose, since we
will end up doing IO which we are trying to avoid.

David Miller mentions an approach11 where the system clock could be made more fine
grained to benefit the network subsystem. When such a mechanism is introduced we
could revisit the discussion.

5.0 Alternative solutions

There are other solutions which could be attempted that may prove useful under the
right circumstances.

5.1 Interrupt coalescing

Interrupt coalescing is a feature that lately is becoming more common in a lot of NICs.
On its own in a sufficiently fast processor, coalescing is insufficient. This becomes
fairly obvious when traffic is fast enough but below the processor MLFR. To
demonstrate, let's take a look at results reported for an Altix 1.3Ghz machine by
Arthur Kepner [kepner] on netdev after the latest improvements on the tg3 driver:

At line rate Gige, given Arthur's bulk TCP tests, packets are transmitted at 1500 bytes
MTU. This computes to about 86 Kpps incoming. With coalescing turned on to the
default parameters, on average only 6 packets or so are observed to be processed per
interrupt. If we assume that we have an extra IO read and write per interrupt, this
translates to about 15K IO reads operations/second and 15K IO writes/second. The
reported CPU is over 40%. If you do the math, factoring in that a read is about 2
microseconds and a write is about 1 microsecond, then the high CPU use is easy to
explain.

Compare to the figures on Table 1, where the packets processed per interrupt keeps
going up (implying the IO rates go down).

Additionally, coalescing suffers from a lesser but similar jitter problem described in
our attempted solution and adds latency unnecessarily because the parameters are
static. A more challenging issue is in first byte latency. Because coalesced packets get
delayed (until the total exceeds a certain number of packets or a timeout happens),
interactive applications that require that the first byte be delivered immediately suffer
in performance(databases, any type of control connection setup type application where
connection setup rate is important).

The original tulip and tg3 drivers had a dynamically adjusting coalescing parameter
tuning based on packet load (and packet arrival history) which have since been
removed due to complaints of stability. These features were removed with the
additional goal to simplify the drivers. Greg Banks has had good experiences with the
dynamically adjusting of coalescing parameters and has been urging for restoration of
the feature as a build-time option.

Unfortunately, there is also an upper limit to the number of packets that can be
coalesced which means we suffer from being below the MLFR still when the upper
coalescing parameter is reached.

11 Private email discussion.

5.2 Miscellaneous Solutions

In many conversations with Robert Olsson12, it became clear that if NIC vendors
would have one-shot notifications of interrupts, then we could save IO operations. In
other words, the NIC would interrupt the hardware, then turns itself off, and would be
turned on later by the driver.

Lennert Buytenhek has made a suggestion that we would benefit if perhaps NIC
vendors just DMAed all the interesting bits like interrupt status register, transmit and
receive ring indices, stats, etc. This would result in a CPU L2 cache miss, but would
still be cheaper than IO operations. According to the numbers that we are seeing for
memory access versus IO access, this idea is as sound as the one-shot interrupt13.

The author's thoughts are that we need to audit drivers and try to optimize for IO.
Perhaps we need to start utilizing techniques that have been used since the inception
of Linux on ISA drivers or the i8259 interrupt controller for caching some bits14 so
that PIC reads are avoided whenever possible and sensible.

6.0 Conclusion

This paper has captured some outstanding issues in getting Linux packet processing
performance to the next plane.

We have explained the NAPI state machine and its relation to increased IO at low
traffic rates when the CPUs get fast. This issue is often causing a lot of discussions on
netdev and we hope that this paper, by illustrating what is at stake, will refocus the
discussions to be towards solutions instead of rehashing what the issue is.

We have inferred from various experimental and studies' data that IO is getting more
expensive over time. We have also shown that read IO's cost in absolute time is going
up with newer hardware–an interesting discovery, which on its own merit, makes
writing this paper a rewarding endeavour.

We attempted to resolve the issue in NAPI by introducing a new state transition. Our
solution has proven to be unusable in the general case. We document it so that other
people in the future could learn from it. We also mention other proposals made in
discussions.

One thing that is clear is that there is a lot more fun work for us to do to get to the
next level.

7.0 Acknowledgements

We have come some way to get here. NAPI would not have happened if Alexey
Kuznetsov was not an artist. And if David Miller did not take the brave steps of
making it part of the kernel we would still be in pre-medieval days in Linux.

Many people have made writing this paper a possibility given the very short time it
took to write it.

Robert Olsson and David Miller could have co-authored this paper with me, and I am
sure it would have turned out to be a better paper, but both were busy (or simply
decided to ignore me ;->).

12 This suggestion was made by Robert, as far as I remember, but because it has been said so many
times, it is easy to forget.

13 Since this discussion, I have been informed that infact the Broadcom 567x hardware already does
this and the Linux drivers support it as well.

14 As an example, search for cached_irq_mask in the kernel code.

David poked some of the holes described in the experiments and Robert encouraged
me to publish the conclusions of my experiments despite the undesirable results. And
because of those extra beautiful NAPI SM diagrams and the fact that I needed a paper
for UKUUG in a short time, the advice was timely ;->

Many insightful conversations with David Miller, Lennert Buytenhek, Robert Olsson,
Harald Welte, Jesse Brandeburg, Arthur Kepner, Greg Banks, and Ralf Bächle
contributed to this paper's creation.

Of course this paper would never had been written if it was not for the annoyances of
the many people who show up on netdev every summer trying to shoot down NAPI.
You folks make us better. Hopefully this paper will make you shoot better. Please
keep up being annoying pests: if you can avoid doing it before I had my dose of
double-double15 or on days when it is not raining16, it would be appreaciated a lot
more.

8.0 References

● [JMKK], J. Mogul/KK Ramakrishnan, “Eliminating Receive Livelock in an
interrupt driven kernel”, Usenix, January1996

● [NAPI], J Hadi Salim/R Olsson/A Kuznetsov, "Beyond Softnet", Usenix,
November 2001

● [Nahum], Erich Nahum et al, “Server Network Scalability and TCP offload”,
Usenix, 2005

● [iod00d], Grant Grundler, “IA64-Linux Perf Tools for IO dorks”, OLS, 2004

● [mmio_test], Harald Welte, Robert Olsson, Lennert Buytenhek, private emails

● [varghese], George Varghese, “Efficient Fair Queuing Using Deficit Round Robin”

● [IXIA], http://www.ixiacomm.com

● [jhssucon], J Hadi Salim, “Linux Stateless Firewalling”, SUCON, 2004

● [akepner], Arthur Kepner, “Perf data with recent tg3 patches”, Netdev, May 12,
2005

15 Not talking about crack. Its a colloquialism to describe coffee from a Canadian chain known as Tim
Hortons. I believe the term recently made it in some dictionary.

16 Attempted humor.

