Migrate a RTAI Application to RT-Preempt

A case study

inu
Cronix

Initial position

e Linux-2.4.26 + RTAI
 Existing Application (Automated Test Equipment)

— Audio stimulation
— Frequency generator (1 - 1000Hz)
— Power fail scenarios

— Serial data stream capture and analysis

Goal

e | inux-2.6 + Realtime Extension

* Make the application code more modular and portable.
Code must be usable on an unmodified kernel

> Application Programming Interface: POSIX

Which real-time extension to use ?

Available choices:
e RT-Linux
— Excluded due to licensing

e RTAI/Xenomai
* RT-Preempt

Xenomai vs. RT-Preempt

Xenomai:
* Dual Kernel approach
» Separate libraries

* RTAI migration skin allows
easy transition of the
existing code

RT-Preempt
* Single Kernel
 Standard glibc (+ patches)

* Reimplementation of the
code necessary

Xenomai first choice ?

e POSIX interface not fully implemented
* One to one usage of existing code did not work out

* Adds 300k+ binary code size and 250k+ data size to the
kernel

* Code has to be modified / recompiled to use on vanilla
_INUX

* Unclear project situation after the RTAI split

What about RT-Preempt ?

e POSIX interface fully implemented

* Small increase in kernel size (36
e Strong and mainline visible deve
* Code runs unmodified on vanilla

* Performance evaluation positive

K code, 15k data)

opment

Linux

How to migrate smoothly and fast ?

Stub device drivers implemented first, so application and device
driver development can go in parallel

Userspace: Kernel:

e Complete redesign of the * Usage of a framework for
application industrial 1/0s

* Reuse of code evaluated * Driver implementation
restricted to absolute
necessary low level
functions

* Modular functionalities
implemented In parallel

What's the result ?

Two weeks of implementation time. (4 engineers)
* Functional prototype

* Shiny new modular design

* |mpressive decrease of code lines:

Original RTAI code: 12200

New implementation: 7300

Performance results

Environment:

- Pentium M 1,4GHz

— Custom made interface hardware (Audio stimulation,
Frequency stimulation, Fieldbus interface)

Performance results

Audio: Interrupt driven refill of the D/A buffer (Period: 720us)

Hardware

ISR (Low level ACK) Wakeup UT

mmap

Buffer Refill Task
* Fill FIFO with pre calculated values
* Calculate next buffer or read from mmapped file

Maximum Latency

(Hardware interrupt -> Last FIFO entry written): 220us

Performance results

Frequency stimulation: 1-8 Timers toggle an output pin

Hardware

Timer callback

Driver High Resolution timers

Frequency Control Task
» Command pattern processing

Frequency |itter: max. 60us
e

Performance results
Data stream capture from the device under test

Hardware
ISR (Low level ACK) Wakeup UT
mmap
Buffer Readout Task
* Read FIFO

* Store values into a Ring Buffer

Signal

Data processing task
* Read and process values from the Ring Buffer
* Store result

Performance results

Data stream capture from the device under test

Data Rate: 115200 Baud

Interrupt Rate: 1.3 ms

Maximum Latency (Interrupt -> Readout last byte): 380us
Ringbuffer size: 256kiB

Max. Filllevel: 160 kiB

Is Preempt-RT production ready ?

It depends.
* The development process has stabilized

* Productized versions are necessary (not every single -rt
release is usable)

* Used already in products:

— Laser control
— Wood working machines (multi axis servo control)

— Soft-PLC (ARM, PPC based)

